The binomial Langevin model (BLM) predicts mixture fraction statistics including higher moments excellently, but imposing boundedness for the large scalar spaces typically associated with chemically reacting flows becomes intractable. This central difficulty can be removed by using the mixture fraction as the reference variable in a generalized multiple mapping conditioning (MMC) approach. The resulting probabilistic BLM–MMC formulation has several free parameters that impact the turbulence–chemistry interactions in complex flows: the dissipation timescale ratio, the locality in selecting pairs of particles for mixing, and the fraction of particles mixed per time step. The impact of parametric variations on the behavior of the BLM–MMC model is investigated for a complex flow featuring auto-ignition to determine model sensitivities and identify optimal values. It is shown that only the mixture fraction rms is sensitive to the dissipation timescale ratio with the expected behavior of an increased ratio leading to a reduction in rms. Controlling locality by increasing the maximum possible distance between paired particles in reference space has a similar impact. Increasing the fraction of particles mixed only affects reacting scalars by advancing ignition. The modified Curl's model is used for the mixing process and the specified amount of mixing principally controls the local extinction and reignition behavior. It is further shown that the standard value of the dissipation timescale ratio is satisfactory; the amount of mixing should be half that specified by Curl's model; and the distance between particle pairs in reference space should be proportional to the diffusion length scale.

1.
D. J.
Beerer
and
V. G.
McDonell
, “
Autoignition of Hydrogen and Air Inside a Continuous Flow Reactor With Application to Lean Premixed Combustion
”,
J. Eng. Gas Turbines Power
130
,
051507
(
2008
).
2.
D.
Ahrens
,
M.
Kolb
,
C.
Hirsch
, and
T.
Sattelmayer
, “
NOx Formation in a Reacting Premixed Jet in Hot Cross Flow
”, in
Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Volume 4B: Combustion, Fuels and Emissions
(ASME,
2014
).
3.
W.
Qian
,
M.
Zhu
, and
S.
Li
, “
A Kinetics Study on the NOx Emissions of Axially Staged Combustion System for Gas Turbine Applications
”, in
Proceedings of Shanghai 2017 Global Power and Propulsion Forum
(GPPS,
2017
).
4.
S.
Li
,
W.
Qian
,
H.
Liu
,
G.
Liu
, and
M.
Zhu
, “
Autoignition and flame lift-off behavior of a fuel jet mixing with turbulent hot air coflow
”, in
Proceedings of the Combustion Institute
(Elsevier,
2020
), p.
1540
.
5.
W.
Konrad
,
N.
Brehm
,
F.
Kameier
,
C.
Freeman
, and
I. J.
Day
, “
Combustion Instability Investigations on the BR710 Jet Engine
”,
J. Eng. Gas Turbines Power
120
,
34
(
1998
).
6.
J.
Eckstein
,
E.
Freitag
,
C.
Hirsch
,
T.
Sattelmayer
, and
J.
Eng
, “
Experimental Study on the Role of Entropy Waves in Low-Frequency Oscillations in a RQL Combustor
”,
Gas Turbines Power
128
,
264
(
2006
).
7.
G.
Vignat
,
E. L.
Schiavo
,
D.
Laera
,
A.
Renaud
,
L.
Gicquel
,
D.
Durox
, and
S.
Candel
, “
Dynamics of spray and swirling flame under acoustic oscillations: A joint experimental and LES investigation
”, in
Proceedings of the Combustion Institute
(Elsevier,
2020
).
8.
F.
Baillot
,
C.
Patat
,
M.
Cáceres
,
J.-B.
Blaisot
, and
E.
Domingues
, “
Saturation phenomenon of swirling spray flames at pressure antinodes of a transverse acoustic field
”, in
Proceedings of the Combustion Institute
(Elsevier,
2020
).
9.
K. M.
Lyons
, “
Toward an understanding of the stabilization mechanisms of lifted turbulent jet flames: {Experiments}
”,
Prog. Energy Combust. Sci.
33
,
211
(
2007
).
10.
G.
Coppola
,
B.
Coriton
, and
A.
Gomez
, “
Highly Turbulent Counterflow Flames: {A} Laboratory Scale Benchmark for Practical Systems
”,
Combust. Flame
156
,
1834
(
2009
).
11.
Y.
Shoshin
and
J.
Jarosinski
, “
On Extinction Mechanism of Lean Limit Methane—Air Flame in a Standard Flammability Tube
”,
Proc. Combust. Inst.
32
,
1043
(
2009
).
12.
U.
Do Lee
,
C. S.
Yoo
,
J. H.
Chen
, and
J. H.
Frank
, “
Effects of {H$–2$O} and {NO} on Extinction and Re-ignition of Vortex-Perturbed Hydrogen Counterflow Flames
”,
Proc. Combust. Inst.
32
,
1059
(
2009
).
13.
S.
Delhaye
,
L. M. T.
Somers
,
J. A.
van Oijen
, and
L. P. H.
de Goey
, “
Incorporating Unsteady Flow-effects Beyond the Extinction Limit in Flamelet-generated Manifolds
”,
Proc. Combust. Inst.
32
,
1051
(
2009
).
14.
A.
Giusti
and
E.
Mastorakos
, “
Turbulent Combustion Modelling and Experiments: Recent Trends and Developments
”,
Flow, Turbul. Combust.
103
,
847
(
2019
).
15.
C.
Dopazo
and
E.
O'Brien
, “
An approach to the autoignition of a turbulent mixture
”,
Acta Astronaut.
1
,
1239
(
1974
).
16.
C.
Dopazo
and
E.
O'Brien
, “
Functional formulation of nonisothermal turbulent reactive flows
”,
Phys. Fluids
17
,
1968
(
1974
).
17.
N.
Peters
, “
Multiscale Combustion and Turbulence
”,
Proc. Combust. Inst.
32
(
1
),
1
(
2009
).
18.
S. B.
Pope
, “
Small Scales, Many Species and the Manifold Challenges of Turbulent Combustion
”,
Proc. Combust. Inst.
34
(
1
),
1
(
2013
).
19.
S. B.
Pope
, “
The Probability Approach to the Modelling of Turbulent Reacting Flows
”,
Combust. Flame
27
,
299
(
1976
).
20.
R.
Lindstedt
,
S.
Louloudi
,
J.
Driscoll
, and
V.
Sick
, “
Finite Rate Chemistry Effects in Turbulent Reacting Flows
”,
Flow, Turbul. Combust.
72
,
407
(
2004
).
21.
Z.
Ren
and
S. B.
Pope
, “
An investigation of the performance of turbulent mixing models
”,
Combust. Flame
136
,
208
(
2004
).
22.
A. Y.
Klimenko
and
S. B.
Pope
, “
The modeling of turbulent reactive flows based on multiple mapping conditioning
”,
Phys. Fluids
15
,
1907
(
2003
).
23.
M. J.
Cleary
and
A. Y.
Klimenko
, “
Multiple Mapping Conditioning: A New Modelling Framework for Turbulent Combustion
”, in
Turbulent Combustion Modeling
, edited by
T.
Echekki
and
E.
Mastorakos
(
Springer
,
2011
), pp.
143
173
.
24.
S. K.
Ghai
,
S.
De
,
K.
Vogiatzaki
, and, and
M. J.
Cleary
, “
Theory and Application of Multiple Mapping Conditioning for Turbulent Reactive Flows
”, in
Modeling and Simulation of Turbulent Combustion
, Energy, Environment, and Sustainability, edited by
S.
De
,
A. K.
Agarwal
,
S.
Chaudhuri
, and
S.
Sen
(
Springer
,
Singapore
,
2018
), pp.
447
474
.
25.
A. P.
Wandel
, “
A Physical Understanding of how Multiple Mapping Conditioning Works
”, in
Proceedings of the 2019 Australian Combustion Symposium
, Invited Talk edited by
P.
Medwell
,
Z.
Alwahabi
,
M.
Evans
,
S.
Chan
,
A.
Chinnici
,
Z.
Tian
, and
B.
Dally
(
The University of Adelaide
,
2019
), pp.
20
27
.
26.
R. S.
Barlow
and
J.
Frank
, “
Effects of Turbulence on Species Mass Fractions in Methane/Air Jet Flames
”,
Proc. Combust. Inst.
27
,
1087
(
1998
).
27.
R.
Cabra
,
J.-Y.
Chen
,
R. W.
Dibble
,
A. N.
Karpetis
, and
R. S.
Barlow
, “
Lifted methane–air jet flames in a vitiated coflow
”,
Combust. Flame
143
,
491
(
2005
).
28.
Y.
Ge
,
M. J.
Cleary
, and
A. Y.
Klimenko
, “
Sparse-Lagrangian FDF simulations of Sandia Flame E with density coupling
”,
Proc. Combust. Inst.
33
,
1401
(
2011
).
29.
A. P.
Wandel
and
R. P.
Lindstedt
, “
Hybrid multiple mapping conditioning modeling of local extinction
”,
Proc. Combust. Inst.
34
,
1365
(
2013
).
30.
K.
Vogiatzaki
,
S.
Navarro-Martinez
,
S.
De
, and
A.
Kronenburg
, “
Mixing Modelling Framework Based on Multiple Mapping Conditioning for the Prediction of Turbulent Flame Extinction
”,
Flow, Turbul. Combust.
95
,
501
(
2015
).
31.
C.
Straub
,
S.
De
,
A.
Kronenburg
, and
K.
Vogiatzaki
, “
The effect of timescale variation in multiple mapping conditioning mixing of PDF calculations for Sandia Flame series D–F
”,
Combust. Theory Modell.
20
,
894
(
2016
).
32.
A.
Varna
,
M. J.
Cleary
, and
E. R.
Hawkes
, “
A multiple mapping conditioning mixing model with a mixture-fraction like reference variable. Part 2: RANS implementation and validation against a turbulent jet flame
”,
Combust. Flame
181
,
354
(
2017
).
33.
A. P.
Wandel
and
R. P.
Lindstedt
, “
A mixture-fraction-based hybrid binomial Langevin-multiple mapping conditioning model
”,
Proc. Combust. Inst.
37
,
2151
(
2019
).
34.
S. K.
Ghai
and
S.
De
, “
Numerical investigation of auto-igniting turbulent lifted CH4/air jet diffusion flames in a vitiated co-flow using a RANS based stochastic multiple mapping conditioning approach
”,
Combust. Flame
203
,
362
(
2019
).
35.
S. B.
Pope
, “
Accessed Compositions in Turbulent Reactive Flows
”,
Flow, Turbul. Combust.
72
,
219
(
2004
).
36.
A. Y.
Klimenko
and
R. W.
Bilger
, “
Conditional moment closure for turbulent combustion
”,
Prog. Energy Combust. Sci.
25
,
595
(
1999
).
37.
A. Y.
Klimenko
, “
Modern modeling of turbulent premixed combustion and reduction of pollution emissions
”,
Clean Air
7
,
14.4
(
2003
).
38.
A. P.
Wandel
and
A. Y.
Klimenko
, “
Testing multiple mapping conditioning mixing for Monte Carlo probability density function simulations
”,
Phys. Fluids
17
,
128105
(
2005
).
39.
A. P.
Wandel
, “
Conditional dissipation of scalars in homogeneous turbulence: Closure for MMC modelling
”,
Combust. Theory Modell.
17
,
707
(
2013
).
40.
A. Y.
Klimenko
, “
Matching the conditional variance as a criterion for selecting parameters in the simplest multiple mapping conditioning models
”,
Phys. Fluids
16
,
4754
(
2004
).
41.
M. J.
Cleary
,
A. Y.
Klimenko
,
J.
Janicka
, and
M.
Pfitzner
, “
A sparse-Lagrangian multiple mapping conditioning model for turbulent diffusion flames
”,
Proc. Combust. Inst.
32
,
1499
(
2009
).
42.
L.
Valiño
and
C.
Dopazo
, “
A binomial Langevin model for turbulent mixing
”,
Phys. Fluids A
3
,
3034
(
1991
).
43.
A. P.
Wandel
and
R. P.
Lindstedt
, “
Hybrid binomial Langevin-multiple mapping conditioning modeling of a reacting mixing layer
”,
Phys. Fluids
21
,
015103
(
2009
).
44.
C.
Dopazo
, “
Relaxation of initial probability density functions in the turbulent convection of scalar fields
”,
Phys. Fluids
22
,
20
(
1979
).
45.
J.
Janicka
,
W.
Kolbe
, and
W.
Kollmann
, “
Closure of the Transport Equation for the Probability Density Funcfion of Turbulent Scalar Fields
”,
J. Non-Equilib. Thermodyn.
4
,
47
(
1979
).
46.
D. B.
Spalding
, “
Concentration fluctuations in a round turbulent free jet
”,
Chem. Eng. Sci.
26
,
95
(
1971
).
47.
S.
Mitarai
,
J. J.
Riley
, and
G.
Kosály
, “
A Lagrangian study of scalar diffusion in isotropic turbulence with chemical reaction
”,
Phys. Fluids
15
,
3856
(
2003
).
48.
S.
Mitarai
,
J. J.
Riley
, and
G.
Kosály
, “
Testing of mixing models for Monte Carlo probability density function simulations
”,
Phys. Fluids
17
,
047101
(
2005
).
49.
T.
Hůlek
and
R. P.
Lindstedt
, “
Joint Scalar-velocity pdf Modelling of Finite Rate Chemistry in a Scalar Mixing Layer
”,
Combust. Sci. Technol.
136
,
303
(
1998
).
50.
R.
Curl
, “
Dispersed phase mixing: I. Theory and effects in simple reactors
”,
AIChE J.
9
,
175
(
1963
).
51.
A.
Varna
,
M. J.
Cleary
, and
E. R.
Hawkes
, “
A multiple mapping conditioning mixing model with a mixture-fraction like reference variable. Part 1: Model derivation and ideal flow test cases
”,
Combust. Flame
181
,
342
(
2017
).
52.
S. K.
Ghai
,
S.
De
, and
A.
Kronenburg
, “
Numerical simulations of turbulent lifted jet diffusion flames in a vitiated coflow using the stochastic multiple mapping conditioning approach
”,
Proc. Combust. Inst.
37
,
2199
(
2019
).
53.
A. P.
Wandel
, “
Development of multiple mapping conditioning (MMC) for application to turbulent combustion
,” Ph.D. thesis, Division of Mechanical Engineering,
The University of Queensland
,
2005
.
54.
K.
Gkagkas
and
R. P.
Lindstedt
, “
Transported PDF modelling with detailed chemistry of pre- and auto-ignition in CH4/air mixtures
”,
Proc. Combust. Inst.
31
,
1559
(
2007
).
55.
R. R.
Cao
,
S. B.
Pope
, and
A. R.
Masri
, “
Turbulent lifted flames in a vitiated coflow investigated using joint PDF calculations
”,
Combust. Flame
142
,
438
(
2005
).
You do not currently have access to this content.