Experiments are used to quantify the influence of propellant gases on blood backspatter and the numerical model presented in the first part of this work (G. Li, N. Sliefert, J. B. Michael, A. L. Yarin, Phys. Fluids, 33, 043318 (2021)) is compared with the experimental results, which stem from muzzle gas expansion. Experimental results with blood backspatter show the reversal of backspatter blood drops and also indicate the presence of secondary atomization induced by the high relative velocity of the oncoming muzzle gases and the backward propagating bullet-induced blood spatter. To characterize the degree of influence, the muzzle gases for a range of modified and unmodified rifle and pistol configurations are considered. These muzzle gas expansions are used to infer the parameters of the numerical model presented in the first part. The significant effects of muzzle gases on blood backspatter have important implications for the use of forensic analysis of deposited bloodstain patterns, where flow reversal and breakup may significantly alter the forensic evidence.

1.
G.
Li
,
N.
Sliefert
,
J. B.
Michael
, and
A. L.
Yarin
, “
Blood backspatter interaction with propellant gases
,”
Phys. Fluids
33
,
043318
(
2021
).
2.
T.
Bevel
and
R. M.
Gardner
,
Bloodstain Pattern Analysis with an Introduction to Crime Scene Reconstruction
(
CRC Press
,
Boca Raton
,
2008
).
3.
National Research Council
,
Strengthening Forensic Science in the United States: A Path Forward
(
National Academies Press
,
Washington, D.C
,
2009
).
4.
D.
Attinger
,
C.
Moore
,
A.
Donaldson
,
A.
Jafari
, and
H. A.
Stone
, “
Fluid dynamics topics in bloodstain pattern analysis: Comparative review and research opportunities
,”
Forensic Sci. Int.
231
,
375
396
(
2013
).
5.
P. L.
Kirk
, Affidavit Regarding State of Ohio vs Samuel H. Sheppard, Court of Common Pleas, Criminal Branch, No. 64571,
1955
.
6.
M. B.
Illes
,
A. L.
Carter
,
P. L.
Laturnus
, and
A. B.
Yamashita
, “
Use of the Backtrack™ computer program for bloodstain pattern analysis of stains from downward-moving drops
,”
Can. Soc. Forensic Sci. J.
38
,
213
217
(
2005
).
7.
A. L.
Carter
, “
The directional analysis of bloodstain patterns theory and experimental validation
,”
Can. Soc. Forensic Sci. J.
34
,
173
189
(
2001
).
8.
A. L.
Carter
,
J.
Forsythe-Erman
,
V.
Hawkes
, and
M.
Illes
, “
Validation of the BackTrack suite of programs for bloodstain pattern analysis
,”
J. Forensic Identif.
56
,
242
254
(
2006
).
9.
K. G.
de Bruin
,
R. D.
Stoel
, and
J. C.
Limborgh
, “
Improving the point of origin determination in bloodstain pattern analysis
,”
J. Forensic Sci.
56
,
1476
1482
(
2011
).
10.
W. F.
Rowe
, “
Errors in the determination of the point of origin of bloodstains
,”
Forensic Sci. Int.
161
,
47
51
(
2006
).
11.
N.
Behrooz
,
L.
Hulse‐Smith
, and
S.
Chandra
, “
An evaluation of the underlying mechanisms of bloodstain pattern analysis error
,”
J. Forensic Sci.
56
,
1136
1142
(
2011
).
12.
S.
De Gruttola
,
K.
Boomsma
, and
D.
Poulikakos
, “
Computational simulation of a non‐Newtonian model of the blood separation process
,”
Artif. Organs
29
,
949
959
(
2005
).
13.
S.
Charm
and
G.
Kurland
, “
Viscometry of human blood for shear rates of 0–100,000 sec−1
,”
Nature
206
,
617
618
(
1965
).
14.
A.
Kolbasov
,
P. M.
Comiskey
,
R. P.
Sahu
,
S.
Sinha-Ray
,
A. L.
Yarin
,
B. S.
Sikarwar
, and
D.
Attinger
, “
Blood rheology in shear and uniaxial elongation
,”
Rheol. Acta
55
,
901
908
(
2016
).
15.
S.
Chien
,
R. G.
King
,
R.
Skalak
,
S.
Usami
, and
A. L.
Copley
, “
Viscoelastic properties of human blood and red cell suspensions
,”
Biorheology
12
,
341
346
(
1975
).
16.
N.
Laan
,
K. G.
De Bruin
,
D.
Slenter
,
J.
Wilhelm
,
M.
Jermy
, and
D.
Bonn
, “
Bloodstain pattern analysis: Implementation of a fluid dynamic model for position determination of victims
,”
Sci. Rep.
5
,
1
8
(
2015
).
17.
P. M.
Comiskey
,
A. L.
Yarin
,
S.
Kim
, and
D.
Attinger
, “
Prediction of blood back spatter from a gunshot in bloodstain pattern analysis
,”
Phys. Rev. Fluids
1
,
043201
(
2016
).
18.
P. M.
Comiskey
,
A. L.
Yarin
, and
D.
Attinger
, “
Hydrodynamics of back spatter by blunt bullet gunshot with a link to bloodstain pattern analysis
,”
Phys. Rev. Fluids
2
,
073906
(
2017
).
19.
P. M.
Comiskey
,
A. L.
Yarin
, and
D.
Attinger
, “
Theoretical and experimental investigation of forward spatter of blood from a gunshot
,”
Phys. Rev. Fluids
3
,
063901
(
2018
).
20.
T. L.
Laber
,
B. P.
Epstein
, and
M. C.
Taylor
, “
High speed digital video analysis of bloodstain pattern formation from common bloodletting mechanisms
,”
IABPA News
24
,
4
12
(
2008
).
21.
See https://alvideo.ameslab.gov/archive/bpa-videos/ for Midwest Forensics Resource Center (MFRC).
22.
M. C.
Taylor
,
T. L.
Laber
,
B. P.
Epstein
,
D. S.
Zamzow
, and
D. P.
Baldwin
, “
The effect of firearm muzzle gases on the backspatter of blood
,”
Int. J. Leg. Med.
125
,
617
628
(
2011
).
23.
E. M.
Schmidt
and
D. D.
Shear
, “
Optical measurements of muzzle blast
,”
AIAA J.
13
,
1086
1091
(
1975
).
24.
G.
Klingenberg
and
H.
Mach
, “
Investigation of combustion phenomena associated with the flow of hot propellant gases-I: Spectroscopic temperature measurements inside the muzzle flash of a rifle
,”
Combust. Flame
27
,
163
176
(
1976
).
25.
G.
Klingenberg
, “
Investigation of combustion phenomena associated with the flow of hot propellant gases. III: Experimental survey of the formation and decay of muzzle flow fields and of pressure measurements
,”
Combust. Flame
29
,
289
309
(
1977
).
26.
P. M.
Comiskey
and
A. L.
Yarin
, “
Self-similar turbulent vortex rings: Interaction of propellant gases with blood backspatter and the transport of gunshot residue
,”
J. Fluid Mech.
876
,
859
880
(
2019
).
27.
H. E.
Edgerton
, “
Shock wave photography of large subjects in daylight
,”
Rev. Sci. Instrum.
29
,
171
172
(
1958
).
28.
M. J.
Hargather
and
G. S.
Settles
, “
Retroreflective shadowgraph technique for large-scale flow visualization
,”
Appl. Opt.
48
,
4449
4457
(
2009
).
29.
D. R.
Guildenbecher
,
C.
López-Rivera
, and
P. E.
Sojka
, “
Secondary atomization
,”
Exp. Fluids
46
,
371
402
(
2009
).
30.
D. R.
Guildenbecher
,
Sandia Particle Holography Processor v. 1.0. Version 00
(
Sandia National Laboratory
,
2015
).
31.
J.-Y.
Tinevez
,
Simpletracker. Version 1.1
(
Mathworks File Exchange
,
2012
).
32.
R.
Clift
and
W. H.
Gauvin
, “
Motion of entrained particles in gas streams
,”
Can. J. Chem. Eng.
49
,
439
448
(
1971
).
33.
D.
Attinger
,
P. M.
Comiskey
,
A. L.
Yarin
, and
K.
De Brabanter
, “
Determining the region of origin of blood spatter patterns considering fluid dynamics and statistical uncertainties
,”
Forensic Sci. Int.
298
,
323
331
(
2019
).
34.
G. M.
Faeth
,
L. P.
Hsiang
, and
P. K.
Wu
, “
Structure and breakup properties of sprays
,”
Int. J. Multiphase Flow
21
,
99
127
(
1995
).
35.
E.
Loth
, “
Quasi-steady shape and drag of deformable bubbles and drops
,”
Int. J. Multiphase Flow
34
,
523
546
(
2008
).
36.
J.
Rocha
and
P. E.
Sojka
, “
Non-Newtonian secondary atomization in the bag and multimode break up regimes
,”
in Proceedings of Americas 27th Annual Conference on Liquid Atomization and Spray Systems (
2015
), pp.
1
9
.
You do not currently have access to this content.