Rotating detonation combustion fueled with partially prevaporized n-heptane sprays is studied with the Eulerian–Lagrangian method. A flattened two-dimensional domain with periodic boundaries is considered to mimic the annular rotating detonation combustor. This work focuses on the effects of prevaporized gas temperature and equivalence ratio on two-phase rotating detonation wave propagation and n-heptane droplet vaporization characteristics in the refill zone. The results show that gas temperature has a great impact on n-heptane sprays vaporization in the refill zone. The droplet evaporation rate increases with the gas temperature, especially when they are close to the deflagration surface. High evaporation rate can be observed for those droplets that are freshly injected into the chamber because they closely interact with the hot product gas from the previous cycle of the rotating detonation. A vapor layer between the droplet-laden area and deflagration surface exists and high concentrations of n-heptane can be found along the deflagration surface. A conceptual model for the droplet and vapor distribution in the refill zone is proposed. The results also show that the blast waves can encroach the refill zone and therefore influence the droplet thermodynamic properties inside the refill zone. The blast waves influence the droplet evaporation rate but have limited effects on droplet temperature, diameter, and spatial distributions. Also, the detonation propagation speed increases with increased prevaporized gas temperature and/or equivalence ratio. The detonation cell size decreases and becomes more uniform as the reactant temperature increases. Moreover, the size and irregularity of rotating detonation cells increase when the prevaporized gas equivalence ratio decreases.

1.
V.
Anand
and
E.
Gutmark
, “
Rotating detonation combustors and their similarities to rocket instabilities
,”
Prog. Energy Combust. Sci.
73
,
182
234
(
2019
).
2.
P.
Wolański
, “
Detonative propulsion
,”
Proc. Combust. Inst.
34
,
125
158
(
2013
).
3.
J.
Koch
and
J. N.
Kutz
, “
Modeling thermodynamic trends of rotating detonation engines
,”
Phys. Fluids
32
,
126102
(
2020
).
4.
L.
Yan
,
Z.
Weijiang
,
Y.
Yunjun
,
L.
Zhou
, and
W.
Jianping
, “
Numerical study on the instabilities in H2-air rotating detonation engines
,”
Phys. Fluids
30
,
046106
(
2018
).
5.
P.
Debnath
and
K. M.
Pandey
, “
Numerical investigation of detonation combustion wave in pulse detonation combustor with ejector
,”
J. Appl. Fluid Mech.
10
,
725
733
(
2017
).
6.
J.
Li
,
W.
Fan
,
W.
Chen
,
K.
Wang
, and
C.
Yan
, “
Propulsive performance of a liquid kerosene/oxygen pulse detonation rocket engine
,”
Exp. Therm. Fluid Sci.
35
,
265
271
(
2011
).
7.
Y.
Fang
,
Y.
Zhang
,
X.
Deng
, and
H.
Teng
, “
Structure of wedge-induced oblique detonation in acetylene-oxygen-argon mixtures
,”
Phys. Fluids
31
,
026108
(
2019
).
8.
P.
Yang
,
H. D.
Ng
,
H.
Teng
, and
Z.
Jiang
, “
Initiation structure of oblique detonation waves behind conical shocks
,”
Phys. Fluids
29
,
086104
(
2017
).
9.
A.
Kawasaki
,
T.
Inakawa
,
J.
Kasahara
,
K.
Goto
,
K.
Matsuoka
,
A.
Matsuo
, and
I.
Funaki
, “
Critical condition of inner cylinder radius for sustaining rotating detonation waves in rotating detonation engine thruster
,”
Proc. Combust. Inst.
37
,
3461
3469
(
2019
).
10.
Y.
Zheng
,
C.
Wang
,
Y.
Wang
,
Y.
Liu
, and
Z.
Yan
, “
Numerical research of rotating detonation initiation processes with different injection patterns
,”
Int. J. Hydrogen Energy
44
,
15536
15552
(
2019
).
11.
T. H.
Yi
,
J.
Lou
,
C.
Turangan
,
J. Y.
Choi
, and
P.
Wolanski
, “
Propulsive performance of a continuously rotating detonation engine
,”
J. Propul. Power
27
,
171
181
(
2011
).
12.
R.
Zhou
,
D.
Wu
, and
J.
Wang
, “
Progress of continuously rotating detonation engines
,”
Chin. J. Aeronaut.
29
,
15
29
(
2016
).
13.
J. Z.
Ma
,
M.
Luan
,
Z.
Xia
,
J.
Wang
,
S.
Zhang
,
S.
Yao
, and
B.
Wang
, “
Recent progress, development trends, and consideration of continuous detonation engines
,”
AIAA J.
58
,
4976
5035
(
2020
).
14.
P.
Shen
and
T.
Adamson
, Jr.
, “
Theoretical analysis of a rotating two-phase detonation in liquid rocket motors
,”
NASA CR
122294
(
1973
).
15.
F. A.
Bykovskii
,
S. A.
Zhdan
, and
E. F.
Vedernikov
, “
Continuous spin detonation of fuel-air mixtures
,”
Combust. Explos. Shock Waves
42
,
463
471
(
2006
).
16.
F. A.
Bykovskii
,
S. A.
Zhdan
, and
E. F.
Vedernikov
, “
Continuous spin detonation
,”
J. Propuls. Power
22
,
1204
1216
(
2006
).
17.
F. A.
Bykovskii
,
S. A.
Zhdan
, and
E. F.
Vedernikov
, “
Continuous spin detonation of a heterogeneous kerosene–air mixture with addition of hydrogen
,”
Combust. Explos. Shock Waves
52
,
371
373
(
2016
).
18.
F. A.
Bykovskii
,
S. A.
Zhdan
, and
E. F.
Vedernikov
, “
Continuous detonation of the liquid kerosene-air mixture with addition of hydrogen or syngas
,”
Combust. Explos. Shock Waves
55
,
589
598
(
2019
).
19.
J.
Kindracki
, “
Experimental studies of kerosene injection into a model of a detonation chamber
,”
J. Power Technol.
92
,
80
89
(
2012
); available at https://papers.itc.pw.edu.pl/index.php/JPT/article/view/305
20.
J.
Kindracki
, “
Experimental research on rotating detonation in liquid fuel–gaseous air mixtures
,”
Aerosp. Sci. Technol.
43
,
445
453
(
2015
).
21.
B.
Sun
and
H.
Ma
, “
Two-dimensional numerical study of two-phase rotating detonation wave with different injections
,”
AIP Adv.
9
,
115307
(
2019
).
22.
A. K.
Hayashi
,
N.
Tsuboi
, and
E.
Dzieminska
, “
Numerical study on JP-10/air detonation and rotating detonation engine
,”
AIAA J.
58
,
5078
5094
(
2020
).
23.
Q.
Meng
,
M.
Zhao
,
H.
Zheng
, and
H.
Zhang
, “
Eulerian-Lagrangian modelling of rotating detonative combustion in partially pre-vaporized n-heptane sprays with hydrogen addition
,”
Fuel
290
,
119808
(
2021
).
24.
C. T.
Crowe
,
J. D.
Schwarzkopf
,
M.
Sommerfeld
, and
Y.
Tsuji
,
Multiphase Flows with Droplets and Particles
(
CRC Press
,
2011
).
25.
G. B.
Macpherson
,
N.
Nordin
, and
H. G.
Weller
, “
Particle tracking in unstructured,arbitrary polyhedral meshes for use in CFD and molecular dynamics
,”
Commun. Numer. Methods Eng.
25
,
263
273
(
2009
).
26.
Z.
Huang
,
M.
Zhao
,
Y.
Xu
,
G.
Li
, and
H.
Zhang
, “
Eulerian-Lagrangian modelling of detonative combustion in two-phase gas-droplet mixtures with OpenFOAM: Validations and verifications
,”
Fuel
286
,
119402
(
2021
).
27.
H.
Zhang
, see http://blog.nus.edu.sg/huangwei/nus-ryrhocentralfoam-solver/ “National University of Singapore, Mechanical Engineering”
28.
H. G.
Weller
,
G.
Tabor
,
H.
Jasak
, and
C.
Fureby
, “
A tensorial approach to computational continuum mechanics using object-oriented techniques
,”
Comput. Phys.
12
,
620
631
(
1998
).
29.
M.
Zhao
,
J.
Li
,
C. J.
Teo
,
B. C.
Khoo
, and
H.
Zhang
, “
Effects of variable total pressures on instability and extinction of rotating detonation combustion
,”
Flow Turbul. Combust.
104
,
261
290
(
2020
).
30.
M.
Zhao
and
H.
Zhang
, “
Origin and chaotic propagation of multiple rotating detonation waves in hydrogen/air mixtures
,”
Fuel
275
,
117986
(
2020
).
31.
C. J.
Greenshields
,
H. G.
Weller
,
L.
Gasparini
, and
J. M.
Reese
, “
Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows
,”
Int. J. Numer. Methods Fluids
63
,
1
21
(
2009
).
32.
M.
Zhao
,
M. J.
Cleary
, and
H.
Zhang
, “
Combustion mode and wave multiplicity in rotating detonative combustion with seperate reactant injection
,”
Combust. Flame
225
,
291
304
(
2021
).
33.
A.
Kurganov
,
S.
Noelle
, and
G.
Petrova
, “
Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton–Jacobi equations
,”
SIAM J. Sci. Comput.
23
,
707
740
(
2001
).
34.
C. K.
Westbrook
and
F. L.
Dryer
, “
Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames
,”
Combust. Sci. Technol.
27
,
31
43
(
1981
).
35.
B.
Franzelli
,
E.
Riber
,
M.
Sanjosé
, and
T.
Poinsot
, “
A two-step chemical scheme for kerosene–air premixed flames
,”
Combust. Flame
157
,
1364
1373
(
2010
).
36.
S.
Liu
,
J. C.
Hewson
,
J. H.
Chen
, and
H.
Pitsch
, “
Effects of strain rate on high-pressure nonpremixed n-heptane autoignition in counterflow
,”
Combust. Flame
137
,
320
339
(
2004
).
37.
J.
Shepherd
, see https://shepherd.Caltech.Edu/edl/publicresources/sdt/ for “California Institute of Technology”
38.
Y.
Mahmoudi
,
K.
Mazaheri
, and
S.
Parvar
, “
Hydrodynamic instabilities and transverse waves in propagation mechanism of gaseous detonations
,”
Acta Astronaut.
91
,
263
282
(
2013
).
39.
S.
Yao
and
J.
Wang
, “
Multiple ignitions and the stability of rotating detonation waves
,”
Appl. Therm. Eng.
108
,
927
936
(
2016
).
40.
S.
Yao
,
M.
Liu
, and
J.
Wang
, “
Numerical investigation of spontaneous formation of multiple detonation wave fronts in rotating detonation engine
,”
Combust. Sci. Technol.
187
,
1867
1878
(
2015
).
41.
D.
Schwer
and
K.
Kailasanath
, “
Numerical investigation of the physics of rotating detonation engines
,”
Proc. Combust. Inst.
33
,
2195
2202
(
2011
).
42.
N.
Tsuboi
,
Y.
Watanabe
,
T.
Kojima
, and
A. K.
Hayashi
, “
Numerical estimation of the thrust performance on a rotating detonation engine for a hydrogen-oxygen mixture
,”
Proc. Combust. Inst.
35
,
2005
2013
(
2015
).
43.
J.
Li
,
P.
Chang
,
L.
Li
,
Y.
Yang
,
C.
Teo
, and
B.
Khoo
, “
Investigation of injection strategy for liquid-fuel rotating detonation engine
,” AIAA Aerospace Sciences Meeting, Kissimmee, Florida (
2018
).
44.
R. W.
Houim
and
R. T.
Fievisohn
, “
The influence of acoustic impedance on gaseous layered detonations bounded by an inert gas
,”
Combust. Flame
179
,
185
198
(
2017
).
45.
P.
Dai
,
C.
Qi
, and
Z.
Chen
, “
Effects of initial temperature on autoignition and detonation development in dimethyl ether/air mixtures with temperature gradient
,”
Proc. Combust. Inst.
36
,
3643
3650
(
2017
).
46.
C. K.
Law
,
Combustion Physics
(
Cambridge University Press
,
2006
).
47.
Y.
Zhuang
,
Q.
Li
,
P.
Dai
, and
H.
Zhang
, “
Autoignition and detonation characteristics of n-heptane/air mixture with water droplets
,”
Fuel
266
,
117077
(
2020
).
48.
M.
Lesieur
,
O.
Metais
, and
P.
Comte
,
Large-Eddy Simulation of Turbulence
(
Combridge University Press
,
2005
).
49.
V.
Duke-Walker
,
W.
Maxon
,
S.
Almuhna
, and
J.
McFarland
, “
Evaporation and breakup effects in the shock-driven multiphase instability
,”
J. Fluid Mech.
908
,
A13
(
2021
).
50.
Z.
Huang
and
H.
Zhang
, “
On the interactions between a propagating shock wave and evaporating water droplets
,” eprint arXiv:2011.02071 (
2020
).
51.
G.
Gai
,
O.
Thomine
,
S.
Kudriakov
, and
A.
Hadjadj
, “
A new formulation of a spray dispersion model for particle/droplet-laden flows subjected to shock waves
,”
J. Fluid Mech.
905
,
A24
(
2020
).
You do not currently have access to this content.