We consider a model of a third-grade viscous Korteweg-type fluid in three space dimensions and apply the extended Liu procedure in order to explicitly solve the constraints imposed by the entropy principle on the nonlocal constitutive relations. We detail the algorithm we use and are able to characterize the material functions involved in the constitutive equations. In a natural way, the application of the extended Liu procedure allows us to recover an extra-term in the entropy flux, preserving all the features of third-grade viscous Korteweg-type fluids. Moreover, a further constraint, in order to avoid that at equilibrium only very special phase boundaries are admissible, is investigated.

1.
D. J.
Korteweg
, “
Sur la forme qui prennent les équations du mouvement des fluids si l'on tient compte des forces capillaires par des variations de densité considérables mais continues et sur la théorie de la capillarité dans l'hypothèse d'une variation continue de la densité
,”
Arch. Néerl. Sci. Exactes Nat., Ser. II
6
,
1
24
(
1901
).
2.
M.
Heida
and
J.
Málek
, “
On Korteweg-type compressible fluid-like materials
,”
Int. J. Eng. Sci.
48
,
1313
1324
(
2010
).
3.
J. E.
Dunn
and
K. R.
Rajagopal
, “
Fluids of differential type: Critical review and thermodynamic analysis
,”
Int. J. Eng. Sci.
33
,
689
729
(
1995
).
4.
C.
Truesdell
and
K. R.
Rajagopal
,
An Introduction to the Mechanics of Fluids
(
Birkhäuser
,
Boston, Basel, Berlin
,
2000
).
5.
E. C.
Aifantis
and
J.
Serrin
, “
The mechanical theory of fluid interfaces and Maxwell's rule
,”
J. Colloid Interface Sci.
96
,
517
529
(
1983
).
6.
E. C.
Aifantis
and
J.
Serrin
, “
Equilibrium solutions in the mechanical theory of fluid microstructures
,”
J. Colloid Interface Sci.
96
,
530
547
(
1983
).
7.
M.
Slemrod
, “
Admissibility criteria for propagating phase boundaries in a van der Waals fluid
,”
Arch. Ration. Mech. Anal.
81
,
301
315
(
1983
).
8.
M.
Slemrod
, “
Dynamic phase transitions in a van der Waals fluid
,”
J. Differ. Equations
52
,
1
23
(
1984
).
9.
J. E.
Dunn
and
J.
Serrin
, “
On the thermomechanics of the interstitial working
,”
Arch. Ration. Mech. Anal.
88
,
95
133
(
1985
).
10.
J. E.
Dunn
, “
Chapter 11: Interstitial working and a nonclassical continuum thermodynamics
,” in
New Perspectives in Thermodynamics
, edited by
J.
Serrin
(
Springer Verlag
,
Berlin
,
1986
), pp.
187
222
.
11.
C.
Truesdell
,
Rational Thermodynamics
, 2nd ed. (
Springer Verlag
,
Berlin
,
1984
).
12.
V. A.
Cimmelli
,
A.
Sellitto
, and
V.
Triani
, “
A new thermodynamic framework for second-grade Korteweg–type viscous fluids
,”
J. Math. Phys.
50
,
053101
(
2009
).
13.
V. A.
Cimmelli
,
A.
Sellitto
, and
V.
Triani
, “
A new perspective on the form of the first and second laws in rational thermodynamics: Korteweg fluids as an example
,”
J. Non-Equilib. Thermodyn.
35
,
251
265
(
2010
).
14.
V. A.
Cimmelli
,
F.
Oliveri
, and
A. R.
Pace
, “
On the thermodynamics of Korteweg fluids with heat conduction and viscosity
,”
J. Elasticity
104
,
115
131
(
2011
).
15.
I.
Müller
, “
On the entropy inequality
,”
Arch. Ration. Mech. Anal.
26
,
118
141
(
1967
).
16.
B. D.
Coleman
and
W.
Noll
, “
The thermodynamics of elastic materials with heat conduction and viscosity
,”
Arch. Ration. Mech. Anal.
13
,
167
178
(
1963
).
17.
I.-S.
Liu
, “
Method of Lagrange multipliers for exploitation of the entropy principle
,”
Arch. Ration. Mech. Anal.
46
,
131
148
(
1972
).
18.
V. A.
Cimmelli
, “
An extension of Liu procedure in weakly nonlocal thermodynamics
,”
J. Math. Phys.
48
,
113510
(
2007
).
19.
V. A.
Cimmelli
,
A.
Sellitto
, and
V.
Triani
, “
A generalized Coleman–Noll procedure for the exploitation of the entropy principle
,”
Proc. R. Soc. A
466
,
911
925
(
2010
).
20.
V. A.
Cimmelli
,
F.
Oliveri
, and
V.
Triani
, “
Exploitation of the entropy principle: Proof of Liu theorem if the gradients of the governing equations are considered as constraints
,”
J. Math. Phys.
52
,
023511
(
2011
).
21.
V. A.
Cimmelli
,
F.
Oliveri
, and
A. R.
Pace
, “
Thermodynamical setting for gradient continuum theories with vectorial internal variables: Application to granular materials
,”
Int. J. Non-Linear Mech.
49
,
72
76
(
2013
).
22.
V. A.
Cimmelli
,
F.
Oliveri
, and
A. R.
Pace
, “
A nonlocal phase-field model of Ginzburg–Landau–Korteweg fluids
,”
Continnum Mech. Thermodyn.
27
,
367
378
(
2015
).
23.
F.
Oliveri
,
A.
Palumbo
, and
P.
Rogolino
, “
On a model of mixtures with internal variables: Extended Liu procedure for the exploitation of the entropy principle
,”
Atti Accad. Pelorit. Pericol.-Cl. Sci. Fis., Mat. Nat.
94
,
A2
(
2016
).
24.
V. A.
Cimmelli
,
M.
Gorgone
,
F.
Oliveri
, and
A. R.
Pace
, “
Weakly nonlocal thermodynamics of binary mixtures of Korteweg fluids with two velocities and two temperatures
,”
Eur. J. Mech. B
83
,
58
65
(
2020
).
25.
M.
Gorgone
,
F.
Oliveri
, and
P.
Rogolino
, “
Continua with non-local constitutive laws: Exploitation of entropy inequality
,”
Int. J. Non-Linear Mech.
126
,
103573
(
2020
).
26.
A.
Morro
, “
Unified approach to evolution equations for non–isothermal phase transitions
,”
Appl. Math. Sci.
1
,
339
353
(
2007
).
27.
A.
Morro
, “
Non-isothermal phase-field models and evolution equation
,”
Arch. Mech.
58
,
257
271
(
2006
).
28.
L. D.
Landau
and
V. L.
Ginzburg
,
On the Theory of Superconductivity
, edited by
L. D.
Landau
and
D.
ter Haar
(
Pergamon Press
,
Oxford
,
1965
), pp.
546
568
.
29.
C.
Truesdell
and
W.
Noll
,
The Non-Linear Field Theories of Mechanics
, 3rd ed. (
Springer-Verlag
,
New York
,
2004
).
30.
C.
Truesdell
,
A First Course in Rational Continuum Mechanics
, 2nd ed. (
Academic Press
,
San Diego
,
1991
).
31.
G. F.
Smith
,
Constitutive Equations for Anisotropic and Isotropic Materials
(
North Holland Press
,
1994
).
32.
C. C.
Wang
, “
A new representation theorem for isotropic functions: An answer to professor G. F. Smith's criticism of my papers on representations for isotropic functions: Part 1. Scalar-valued isotropic functions
,”
Arch. Ration. Mech. Anal.
36
,
166
197
(
1970
).
33.
C. C.
Wang
, “
A new representation theorem for isotropic functions: An answer to professor G. F. Smith's criticism of my papers on representations for isotropic functions: Part 2. Symmetric tensor-valued isotropic functions, and skew-symmetric tensor-valued isotropic functions
,”
Arch. Ration. Mech. Anal.
36
,
198
223
(
1970
).
34.
P.
Rogolino
and
V. A.
Cimmelli
, “
Differential consequences of balance laws in extended irreversible thermodynamics of rigid heat conductors
,”
Proc. R. Soc. A
475
,
20180482
(
2019
).
35.
A. C.
Hearn
,
REDUCE User's Manual, Version 3.8
(
Rand Corporation
,
Santa Monica, CA, USA
,
1995
).
36.
T.
Wolf
, “
Investigating differential equations with CRACK, LiePDE, Applysym and ConLaw
,” in
Handbook of Computer Algebra, Foundations, Applications, Systems
, edited by
J.
Grabmeier
,
E.
Kaltofen
, and
V.
Weispfenning
(
Springer
,
New York
,
2002
), pp.
465
468
.
37.
A.
Morro
, “
Entropy flux and Korteweg–type constitutive equations
,”
Riv. Mat. Univ. Parma
5
,
81
91
(
2006
).
38.
J.
Serrin
, “
The form of interfacial surfaces in Korteweg's theory of phase equilibria
,”
Q. Appl. Math.
41
,
357
364
(
1983
).
39.
P.
Pucci
, “
An overdetermined system
,”
Q. Appl. Math.
41
,
365
367
(
1983
).
40.
G.
Manno
,
F.
Oliveri
, and
R.
Vitolo
, “
On differential equations characterized by their Lie point symmetries
,”
J. Math. Anal. Appl.
332
,
767
786
(
2007
).
41.
M.
Gorgone
and
F.
Oliveri
, “
Lie remarkable partial differential equations characterized by Lie algebras of point symmetries
,”
J. Geom. Phys.
144
,
314
323
(
2019
).
You do not currently have access to this content.