We propose a novel integral model describing the motion of both flexible and rigid slender fibers in viscous flow and develop a numerical method for simulating dynamics of curved rigid fibers. The model is derived from nonlocal slender body theory (SBT), which approximates flow near the fiber using singular solutions of the Stokes equations integrated along the fiber centerline. In contrast to other models based on (singular) SBT, our model yields a smooth integral kernel which incorporates the (possibly varying) fiber radius naturally. The integral operator is provably negative definite in a nonphysical idealized geometry, as expected from the partial differential equation theory. This is numerically verified in physically relevant geometries. We discuss the convergence and stability of a numerical method for solving the integral equation. The accuracy of the model and method is verified against known models for ellipsoids. Finally, we develop an algorithm for computing dynamics of rigid fibers with complex geometries in the case where the fiber density is much greater than that of the fluid, for example, in turbulent gas-fiber suspensions.

1.
L.
af Klinteberg
and
A. H.
Barnett
, “
Accurate quadrature of nearly singular line integrals in two and three dimensions by singularity swapping
,”
BIT Numer. Math.
61
,
83
36
(
2021
).
2.
K.
Atkinson
and
W.
Han
,
Theoretical Numerical Analysis
(
Springer
,
2005
), Vol.
39
.
3.
K. E.
Atkinson
,
An Introduction to Numerical Analysis
(Wiley,
1978
).
4.
G.
Batchelor
, “
Slender-body theory for particles of arbitrary cross-section in Stokes flow
,”
J. Fluid Mech.
44
(
3
),
419
440
(
1970
).
5.
E. L.
Bouzarth
and
M. L.
Minion
, “
Modeling slender bodies with the method of regularized stokeslets
,”
J. Comput. Phys.
230
(
10
),
3929
3947
(
2011
).
6.
H.
Brenner
, “
The stokes resistance of an arbitrary particle–iv arbitrary fields of flow
,”
Chem. Eng. Sci.
19
(
10
),
703
727
(
1964
).
7.
N. R.
Challabotla
,
L.
Zhao
, and
H. I.
Andersson
, “
On fiber behavior in turbulent vertical channel flow
,”
Chem. Eng. Sci.
153
,
75
86
(
2016
).
8.
S.
Chattopadhyay
and
X.-L.
Wu
, “
The effect of long-range hydrodynamic interaction on the swimming of a single bacterium
,”
Biophys. J.
96
(
5
),
2023
2028
(
2009
).
9.
A. T.
Chwang
and
T. Y.-T.
Wu
, “
Hydromechanics of low-Reynolds-number flow. Part 2: Singularity method for Stokes flows
,”
J. Fluid Mech.
67
(
4
),
787
815
(
1975
).
10.
R.
Cortez
, “
The method of regularized stokeslets
,”
SIAM J. Sci. Comput.
23
(
4
),
1204
1225
(
2001
).
11.
R.
Cortez
, “
Regularized Stokeslet segments
,”
J. Comp. Phys.
375
,
783
796
(
2018
).
12.
R.
Cortez
,
L.
Fauci
, and
A.
Medovikov
, “
The method of regularized Stokeslets in three dimensions: Analysis, validation, and application to helical swimming
,”
Phys. Fluids
17
(
3
),
031504
(
2005
).
13.
R.
Cortez
and
M.
Nicholas
, “
Slender body theory for Stokes flows with regularized forces
,”
Commun. Appl. Math. Comput. Sci.
7
(
1
),
33
62
(
2012
).
14.
R.
Cox
, “
The motion of long slender bodies in a viscous fluid part 1. general theory
,”
J. Fluid Mech.
44
(
4
),
791
810
(
1970
).
15.
A. R.
Esmaeili
,
B.
Sajadi
, and
M.
Akbarzadeh
, “
Numerical simulation of ellipsoidal particles deposition in the human nasal cavity under cyclic inspiratory flow
,”
J. Braz. Soc. Mech. Sci. Eng.
42
(
5
),
1
13
(
2020
).
16.
X.
Fan
,
N.
Phan-Thien
, and
R.
Zheng
, “
A direct simulation of fibre suspensions
,”
J. Non-Newton. Fluid Mech
74
(
1
),
113
135
(
1998
).
17.
H.
Goldstein
,
C.
Poole
, and
J.
Safko
,
Classical Mechanics
(Addison-Wesley, Reading, MA,
2002
).
18.
T.
Götz
, “
Interactions of fibers and flow: Asymptotics, theory and numerics
,” Doctoral dissertation (
University of Kaiserslautern
,
2000
).
19.
K.
Gustavsson
and
A.-K.
Tornberg
, “
Gravity induced sedimentation of slender fibers
,”
Phys. Fluids
21
(
12
),
123301
(
2009
).
20.
J.
Hämäläinen
,
S. B.
Lindström
,
T.
Hämäläinen
, and
H.
Niskanen
, “
Papermaking fibre-suspension flow simulations at multiple scales
,”
J. Eng. Math.
71
(
1
),
55
79
(
2011
).
21.
G.
Hancock
, “
The self-propulsion of microscopic organisms through liquids
,”
Proc. R. Soc. Lond. A
217
(
1128
),
96
121
(
1953
).
22.
P. C.
Hansen
, “
Numerical tools for analysis and solution of fredholm integral equations of the first kind
,”
Inverse Probl.
8
(
6
),
849
(
1992
).
23.
G. B.
Jeffery
, “
The motion of ellipsoidal particles immersed in a viscous fluid
,”
Proc. R. Soc. Lond. A
102
(
715
),
161
179
(
1922
).
24.
R. E.
Johnson
, “
An improved slender-body theory for Stokes flow
,”
J. Fluid Mech.
99
(
02
),
411
431
(
1980
).
25.
J. B.
Keller
and
S. I.
Rubinow
, “
Slender-body theory for slow viscous flow
,”
J. Fluid Mech.
75
(
4
),
705
714
(
1976
).
26.
R.
Kress
,
V.
Maz'ya
, and
V.
Kozlov
,
Linear Integral Equations
(
Springer
,
1989
), Vol.
82
.
27.
S.
Kuperman
,
L.
Sabban
, and
R.
van Hout
, “
Inertial effects on the dynamics of rigid heavy fibers in isotropic turbulence
,”
Phys. Rev. Fluids
4
(
6
),
064301
(
2019
).
28.
E.
Lauga
and
T. R.
Powers
, “
The hydrodynamics of swimming microorganisms
,”
Rep. Progr. Phys.
72
(
9
),
096601
(
2009
).
29.
J.
Lighthill
, “
Flagellar hydrodynamics
,”
SIAM Rev.
18
(
2
),
161
230
(
1976
).
30.
C.
Marchioli
,
M.
Fantoni
, and
A.
Soldati
, “
Orientation, distribution, and deposition of elongated, inertial fibers in turbulent channel flow
,”
Phys. Fluids
22
(
3
),
033301
(
2010
).
31.
J.
Martin
,
A.
Lusher
,
R. C.
Thompson
, and
A.
Morley
, “
The deposition and accumulation of microplastics in marine sediments and bottom water from the irish continental shelf
,”
Sci. Rep.
7
(
1
),
10772
(
2017
).
32.
O.
Maxian
,
A.
Mogilner
, and
A.
Donev
, “
Integral-based spectral method for inextensible slender fibers in stokes flow
,”
Phys. Rev. Fluids
6
(
1
),
014102
(
2021
).
33.
Y.
Mori
and
L.
Ohm
, “
An error bound for the slender body approximation of a thin, rigid fiber sedimenting in Stokes flow
,”
Res. Math. Sci.
7
(
8
),
8
(
2020
).
34.
Y.
Mori
and
L.
Ohm
, “
Accuracy of slender body theory in approximating force exerted by thin fiber on viscous fluid
,”
Stud. Appl. Math.
(published online) (
2021
).
35.
Y.
Mori
,
L.
Ohm
, and
D.
Spirn
, “
Theoretical justification and error analysis for slender body theory
,”
Comm. Pure Appl. Math.
73
(
6
),
1245
1314
(
2020
).
36.
Y.
Mori
,
L.
Ohm
, and
D.
Spirn
, “
Theoretical justification and error analysis for slender body theory with free ends
,”
Arch. Ration. Mech. Anal.
235
,
1905
1978
(
2020
).
37.
R.
Newsom
and
C.
Bruce
, “
The dynamics of fibrous aerosols in a quiescent atmosphere
,”
Phys. Fluids
6
(
2
),
521
530
(
1994
).
38.
D. O.
Njobuenwu
and
M.
Fairweather
, “
Simulation of inertial fibre orientation in turbulent flow
,”
Phys. Fluids
28
(
6
),
063307
(
2016
).
39.
A.
Oberbeck
, “
Uber stationare flussigkeitsbewegungen mit berucksichtigung der inner reibung
,”
J. Reine Angew. Math.
81
,
62
80
(
1876
).
40.
L.
Ohm
,
B. K.
Tapley
,
H. I.
Andersson
,
E.
Celledoni
, and
B.
Owren
, “
A slender body model for thin rigid fibers: Validation and comparisons
,” arXiv:1906.00253 (
2019
).
41.
C. J.
Petrie
, “
The rheology of fibre suspensions
,”
J. Non-Newtonian Fluid Mech.
87
(
2
),
369
402
(
1999
).
42.
C.
Pozrikidis
,
Boundary Integral and Singularity Methods for Linearized Viscous Flow
(
Cambridge University Press
,
1992
).
43.
B.
Rodenborn
,
C.-H.
Chen
,
H. L.
Swinney
,
B.
Liu
, and
H.
Zhang
, “
Propulsion of microorganisms by a helical flagellum
,”
Proc. Natl. Acad. Sci.
110
(
5
),
E338
E347
(
2013
).
44.
J.
Rotne
and
S.
Prager
, “
Variational treatment of hydrodynamic interaction in polymers
,”
J. Chem. Phys.
50
(
11
),
4831
4837
(
1969
).
45.
M. J.
Shelley
and
T.
Ueda
, “
The Stokesian hydrodynamics of flexing, stretching filaments
,”
Phys. D
146
(
1
),
221
245
(
2000
).
46.
M.
Shin
and
D. L.
Koch
, “
Rotational and translational dispersion of fibres in isotropic turbulent flows
,”
J. Fluid Mech.
540
,
143
(
2005
).
47.
C.
Siewert
,
R.
Kunnen
,
M.
Meinke
, and
W.
Schröder
, “
Orientation statistics and settling velocity of ellipsoids in decaying turbulence
,”
Atmos. Res.
142
,
45
56
(
2014
).
48.
D. J.
Smith
, “
A boundary element regularized stokeslet method applied to cilia-and flagella-driven flow
,”
Proc. R. Soc. A
465
(
2112
),
3605
3626
(
2009
).
49.
S. E.
Spagnolie
and
E.
Lauga
, “
Comparative hydrodynamics of bacterial polymorphism
,”
Phys. Rev. Lett.
106
(
5
),
058103
(
2011
).
50.
B.
Tapley
,
E.
Celledoni
,
B.
Owren
, and
H. I.
Andersson
, “
A novel approach to rigid spheroid models in viscous flows using operator splitting methods
,”
Numer. Algorithms
81
,
1423
1441
(
2019
).
51.
B. K.
Tapley
,
H. I.
Andersson
,
E.
Celledoni
, and
B.
Owren
, “
Computational methods for tracking inertial particles in discrete incompressible flows
,” arXiv:1907.11936 (
2019
).
52.
I.
Thorp
and
J.
Lister
, “
Motion of a non-axisymmetric particle in viscous shear flow
,”
J. Fluid Mech.
872
,
532
559
(
2019
).
53.
A.-K.
Tornberg
, “
Accurate evaluation of integrals in slender-body formulations for fibers in viscous flow
,” arXiv:2012.12585 (
2020
).
54.
A.-K.
Tornberg
and
K.
Gustavsson
, “
A numerical method for simulations of rigid fiber suspensions
,”
J. Comput. Phys.
215
(
1
),
172
196
(
2006
).
55.
A.-K.
Tornberg
and
M. J.
Shelley
, “
Simulating the dynamics and interactions of flexible fibers in Stokes flows
,”
J. Comput. Phys.
196
(
1
),
8
40
(
2004
).
56.
L. N.
Trefethen
and
J.
Weideman
, “
The exponentially convergent trapezoidal rule
,”
SIAM Rev.
56
(
3
),
385
458
(
2014
).
57.
S.
Twomey
, “
On the numerical solution of fredholm integral equations of the first kind by the inversion of the linear system produced by quadrature
,”
J. ACM (JACM)
10
(
1
),
97
101
(
1963
).
58.
B. J.
Walker
,
M. P.
Curtis
,
K.
Ishimoto
, and
E. A.
Gaffney
, “
A regularised slender-body theory of non-uniform filaments
,”
J. Fluid Mech.
899
,
A3
(
2020
).
59.
B. J.
Walker
,
K.
Ishimoto
,
H.
Gadêlha
, and
E. A.
Gaffney
, “
Filament mechanics in a half-space via regularised stokeslet segments
,”
J. Fluid Mech.
879
,
808
833
(
2019
).
60.
H.
Yamakawa
, “
Transport properties of polymer chains in dilute solution: Hydrodynamic interaction
,”
J. Chem. Phys.
53
(
1
),
436
443
(
1970
).
61.
B.
Zhao
,
E.
Lauga
, and
L.
Koens
, “
Method of regularized stokeslets: Flow analysis and improvement of convergence
,”
Phys. Rev. Fluids
4
(
8
),
084104
(
2019
).
You do not currently have access to this content.