During the pandemic of COVID-19, the public is encouraged to take stairs or escalators instead of elevators. However, the dispersion of respiratory droplets in these places, featured by slopes and human motion, is not well understood yet. It is consequently unclear whether the commonly recommended social-distancing guidelines are still appropriate in these scenarios. In this work, we analyze the dispersion of cough-generated droplets from a passenger riding an escalator with numerical simulations, focusing on the effects of the slope and speed of the escalator on the droplet dispersion. In the simulations, a one-way coupled Eulerian–Lagrangian approach is adopted, with the air-flow solved using the Reynolds-averaged Navier–Stokes method and the droplets modeled as passive Lagrangian particles. It is found that the slope alters the vertical concentration of the droplets in the passenger's wake significantly. The deflection of cough-generated jet and the wake flow behind the passenger drive the cough-generated droplets upwards when descending an escalator and downwards when ascending, resulting in both higher suspension height and larger spreading range of the viral droplets on a descending escalator than on an ascending one. These findings suggest that the present social-distancing guidelines may be inadequate on descending escalators and need further investigation.

1.
Centers for Disease Control and Prevention
, “
Science agenda: Building the evidence base for ongoing COVID-19 response-November 12, 2020
,” (Centers for Disease Control and Prevention,
2020
).
2.
Centers for Disease Control and Prevention
, “
Scientific brief: SARS-CoV-2 and potential airborne transmission-October 5, 2020
,” (Centers for Disease Control and Prevention,
2020
).
3.
World Health Organization, “
Modes of transmission of virus causing COVID-19: Implications for IPC precaution recommendations: Scientific brief, 27 March 2020
,” (World Health Organization,
2020
).
4.
G.
Busco
,
S. R.
Yang
,
J.
Seo
, and
Y. A.
Hassan
, “
Sneezing and asymptomatic virus transmission
,”
Phys. Fluids
32
,
073309
(
2020
).
5.
M.-R.
Pendar
and
J. C.
Psscoa
, “
Numerical modeling of the distribution of virus carrying saliva droplets during sneeze and cough
,”
Phys. Fluids
32
,
083305
(
2020
).
6.
V.
Arumuru
,
J.
Pasa
, and
S. S.
Samantaray
, “
Experimental visualization of sneezing and efficacy of face masks and shields
,”
Phys. Fluids
32
,
115129
(
2020
).
7.
P.
Prasanna Simha
and
P. S.
Mohan Rao
, “
Universal trends in human cough airflows at large distances
,”
Phys. Fluids
32
,
081905
(
2020
).
8.
R.
Mittal
,
C.
Meneveau
, and
W.
Wu
, “
A mathematical framework for estimating risk of airborne transmission of COVID-19 with application to face mask use and social distancing
,”
Phys. Fluids
32
,
101903
(
2020
).
9.
T.
Dbouk
and
D.
Drikakis
, “
On coughing and airborne droplet transmission to humans
,”
Phys. Fluids
32
,
053310
(
2020
).
10.
M.
Abuhegazy
,
K.
Talaat
,
O.
Anderoglu
, and
S. V.
Poroseva
, “
Numerical investigation of aerosol transport in a classroom with relevance to COVID-19
,”
Phys. Fluids
32
,
103311
(
2020
).
11.
S. R.
Narayanan
and
S.
Yang
, “
Airborne transmission of virus-laden aerosols inside a music classroom: Effects of portable purifiers and aerosol injection rates
,” medRxiv (
2021
).
12.
S.
Shao
,
D.
Zhou
,
R.
He
,
J.
Li
,
S.
Zou
,
K.
Mallery
,
S.
Kumar
,
S.
Yang
, and
J.
Hong
, “
Risk assessment of airborne transmission of COVID-19 by asymptomatic individuals under different practical settings
,”
J. Aerosol Sci.
151
,
105661
(
2021
).
13.
A.
Foster
and
M.
Kinzel
, “
Estimating COVID-19 exposure in a classroom setting: A comparison between mathematical and numerical models
,”
Phys. Fluids
33
,
021904
(
2021
).
14.
H.
Liu
,
S.
He
,
L.
Shen
, and
J.
Hong
, “
Simulation-based study on the COVID-19 airborne transmission in a restaurant
,” medRxiv (
2020
).
15.
L.
Wu
,
X.
Liu
,
F.
Yao
, and
Y.
Chen
, “
Numerical study of virus transmission through droplets from sneezing in a cafeteria
,”
Phys. Fluids
33
,
023311
(
2021
).
16.
J.
Lu
,
J.
Gu
,
K.
Li
,
C.
Xu
,
W.
Su
,
Z.
Lai
,
D.
Zhou
,
C.
Yu
,
B.
Xu
, and
Z.
Yang
, “
COVID-19 outbreak associated with air conditioning in restaurant, Guangzhou, China, 2020
,”
Emerging Infect. Dis.
26
,
1628
(
2020
).
17.
B.
Zhang
,
G.
Guo
,
C.
Zhu
,
Z.
Ji
, and
C.-H.
Lin
, “
Transport and trajectory of cough-induced bimodal aerosol in an air-conditioned space
,”
Indoor Built Environ.
2020
, 1420326X20941166.
18.
Y.-Y.
Li
,
J.-X.
Wang
, and
X.
Chen
, “
Can a toilet promote virus transmission? From a fluid dynamics perspective
,”
Phys. Fluids
32
,
065107
(
2020
).
19.
J.-X.
Wang
,
Y.-Y.
Li
,
X.-D.
Liu
, and
X.
Cao
, “
Virus transmission from urinals
,”
Phys. Fluids
32
,
081703
(
2020
).
20.
T.
Dbouk
and
D.
Drikakis
, “
On airborne virus transmission in elevators and confined spaces
,”
Phys. Fluids
33
,
011905
(
2021
).
21.
Z.
Zhang
,
T.
Han
,
K. H.
Yoo
,
J.
Capecelatro
,
A. L.
Boehman
, and
K.
Maki
, “
Disease transmission through expiratory aerosols on an urban bus
,”
Phys. Fluids
33
,
015116
(
2021
).
22.
A.
Khosronejad
,
C.
Santoni
,
K.
Flora
,
Z.
Zhang
,
S.
Kang
,
S.
Payabvash
, and
F.
Sotiropoulos
, “
Fluid dynamics simulations show that facial masks can suppress the spread of COVID-19 in indoor environments
,”
AIP Adv.
10
,
125109
(
2020
).
23.
S.
Verma
,
M.
Dhanak
, and
J.
Frankenfield
, “
Visualizing the effectiveness of face masks in obstructing respiratory jets
,”
Phys. Fluids
32
,
061708
(
2020
).
24.
J.
Xi
,
X. A.
Si
, and
R.
Nagarajan
, “
Effects of mask-wearing on the inhalability and deposition of airborne SARS-CoV-2 aerosols in human upper airway
,”
Phys. Fluids
32
,
123312
(
2020
).
25.
T.
Dbouk
and
D.
Drikakis
, “
On respiratory droplets and face masks
,”
Phys. Fluids
32
,
063303
(
2020
).
26.
M.
Staymates
, “
Flow visualization of an N95 respirator with and without an exhalation valve using schlieren imaging and light scattering
,”
Phys. Fluids
32
,
111703
(
2020
).
27.
E.
Hossain
,
S.
Bhadra
,
H.
Jain
,
S.
Das
,
A.
Bhattacharya
,
S.
Ghosh
, and
D.
Levine
, “
Recharging and rejuvenation of decontaminated N95 masks
,”
Phys. Fluids
32
,
093304
(
2020
).
28.
Z.
Li
,
H.
Wang
,
X.
Zhang
,
T.
Wu
, and
X.
Yang
, “
Effects of space sizes on the dispersion of cough-generated droplets from a walking person
,”
Phys. Fluids
32
,
121705
(
2020
).
29.
B.
Blocken
,
F.
Malizia
,
T.
Druenen
, and
T.
Marchal
, “
Towards aerodynamically equivalent COVID-19 1.5 m social distancing for walking and running
,” Preprint (
2020
).
30.
Hitachi
, “
Tips for elevator/escalator users regarding Coronavirus (COVID-19)
,” (Hitachi,
2020
).
31.
Australia Government-Official Medical Advice
, see https://twitter.com/ausgov/status/1244777064156274689 for “
Coronavirus: Keep 1.5 Meters Apart When on Escalators
,
2020
.”
32.
Xinhua, see http://www.china.org.cn/china/2020-03/25/content_75856941.htm for “
Beijing Reports First Coronavirus Infection from Imported Case
,
2020
.”
33.
L.
Bourouiba
,
E.
Dehandschoewercker
, and
J. W.
Bush
, “
Violent expiratory events: On coughing and sneezing
,”
J. Fluid Mech.
745
,
537
563
(
2014
).
34.
S.
Elghobashi
, “
On predicting particle-laden turbulent flows
,”
Appl. Sci. Res.
52
,
309
329
(
1994
).
35.
Z.
Zhou
,
S.
Wang
, and
G.
Jin
, “
A structural subgrid-scale model for relative dispersion in large-eddy simulation of isotropic turbulent flows by coupling kinematic simulation with approximate deconvolution method
,”
Phys. Fluids
30
,
105110
(
2018
).
36.
F. R.
Menter
, “
Two-equation eddy-viscosity turbulence models for engineering applications
,”
AIAA J.
32
,
1598
1605
(
1994
).
37.
OpenCFD
, see https://www.openfoam.com/ for “
OpenFOAM User Guide
” (last accessed October 13, 2020).
38.
A.
Gosman
and
E.
Ioannides
, “
Aspects of computer simulation of liquid-fueled combustors
,”
J. Energy
7
,
482
490
(
1983
).
39.
H.
Holterman
,
Kinetics and Evaporation of Water Drops in Air
(
Citeseer
,
2003
), Vol.
2012
.
40.
H.
Wang
,
Z.
Li
,
X.
Zhang
,
L.
Zhu
,
Y.
Liu
, and
S.
Wang
, “
The motion of respiratory droplets produced by coughing
,”
Phys. Fluids
32
,
125102
(
2020
).
41.
M.
Frankel
,
G.
Bekö
,
M.
Timm
,
S.
Gustavsen
,
E. W.
Hansen
, and
A. M.
Madsen
, “
Seasonal variations of indoor microbial exposures and their relation to temperature, relative humidity, and air exchange rate
,”
Appl. Environ. Microbiol.
78
,
8289
8297
(
2012
).
42.
L. C.
Marr
,
J. W.
Tang
,
J.
Van Mullekom
, and
S. S.
Lakdawala
, “
Mechanistic insights into the effect of humidity on airborne influenza virus survival, transmission and incidence
,”
J. R. Soc. Interfaces
16
,
20180298
(
2019
).
43.
Schindler Escalators
, “
Planning guide for escalators and moving walks
,” (
Schindler
,
2020
).
44.
D.
Spalding
, “
A single formula for the “law of the wall
,”
Appl. Mech.
28
,
455
(
1961
).
45.
S.
Gao
,
L.
Tao
,
X.
Tian
, and
J.
Yang
, “
Flow around an inclined circular disk
,”
J. Fluid Mech.
851
,
687
714
(
2018
).
46.
Á.
Jiménez
,
A.
Crespo
, and
E.
Migoya
, “
Application of a LES technique to characterize the wake deflection of a wind turbine in yaw
,”
Wind Energy
13
,
559
572
(
2009
).
47.
M.
Bastankhah
and
F.
Porté-Agel
, “
Experimental and theoretical study of wind turbine wakes in yawed conditions
,”
J. Fluid Mech.
806
,
506
541
(
2016
).
48.
Z.
Li
and
X.
Yang
, “
Similarity of wake characteristics for yawed wind turbines of utility-scale
,” arXiv:2011.08495 (
2020
).
49.
J. D.
Anderson
, Jr.
,
Fundamentals of Aerodynamics
(
Tata McGraw-Hill Education
,
2010
).
50.
A. R.
Karagozian
, “
The jet in crossflow
,”
Phys. Fluids
26
,
101303
(
2014
).
You do not currently have access to this content.