The vortex shedding tone of a cylinder in uniform flow can be reduced by applying a porous coating yet this mechanism is not fully understood. An experimental investigation of asymmetric structured porous coated cylinders (SPCCs) was conducted in a small anechoic wind tunnel using a hot-wire anemometry probe placed in the boundary layer, separated shear layer and wake, in conjunction with a microphone in the far-field. Tests were conducted at Reynolds numbers 105, 1.53×105, and 1.66×105. Each SPCC revealed a widened and deeper wake and reduced turbulent kinetic energy levels in the separated shear layer than the bare baseline cylinder. Furthermore, each SPCC revealed two tones that were a multiple of two apart in both the velocity and acoustic power spectral densities. It was shown that the higher frequency tone is generated by localized flow behaviors in the separated shear layer, independent of the vortex shedding tone and its magnitude is inversely related to the SPCC windward surface porosity. Applying a more densely spaced porous region on the cylinder windward side resulted in higher frequency broadband contributions that were shown to be independent of the velocity fluctuations in the wake region. Time-averaged velocity profiles in the wake revealed that the leeward side porosity strongly influences the drag coefficient. Linear stability analysis revealed that the SPCCs develop absolute instabilities in the near wake.

1.
C.
Wang
,
H.
Tang
,
S. C.
Yu
, and
F.
Duan
, “
Active control of vortex-induced vibrations of a circular cylinder using windward-suction-leeward-blowing actuation
,”
Phys. Fluids
28
,
053601
(
2016
).
2.
W.-L.
Chen
,
D.-L.
Gao
,
W.-Y.
Yuan
,
H.
Li
, and
H.
Hu
, “
Passive jet control of flow around a circular cylinder
,”
Exp. Fluids
56
,
201
(
2015
).
3.
C.
Xu
,
Y.
Mao
, and
Z.
Hu
, “
Control of cylinder wake flow and noise through a downstream porous treatment
,”
Aerosp. Sci. Technol.
88
,
233
(
2019
).
4.
T.
Sueki
,
M.
Ikeda
, and
T.
Takaishi
, “
Aerodynamic noise reduction using porous materials and their application to high-speed pantographs
,”
Q. Rep. RTRI
50
,
26
31
(
2009
).
5.
T.
Sueki
,
T.
Takaishi
,
M.
Ikeda
, and
N.
Arai
, “
Application of porous material to reduce aerodynamic sound from bluff bodies
,”
Fluid Dyn. Res.
42
,
015004
(
2010
).
6.
M.
Nishimura
and
T.
Goto
, “
Aerodynamic noise reduction by pile fabrics
,”
Fluid Dyn. Res.
42
,
015003
(
2010
).
7.
H.
Naito
and
K.
Fukagata
, “
Numerical simulation of flow around a circular cylinder having porous surface
,”
Phys. Fluids
24
,
117102
(
2012
).
8.
H.
Liu
,
J.
Wei
, and
Z.
Qu
, “
Prediction of aerodynamic noise reduction by using open-cell metal foam
,”
J. Sound Vib.
331
,
1483
1497
(
2012
).
9.
H.
Liu
,
M.
Azarpeyvand
,
J.
Wei
, and
Z.
Qu
, “
Tandem cylinder aerodynamic sound control using porous coating
,”
J. Sound Vib.
334
,
190
201
(
2015
).
10.
T. F.
Geyer
and
E.
Sarradj
, “
Circular cylinders with soft porous cover for flow noise reduction
,”
Exp. Fluids
57
,
30
(
2016
).
11.
J.
Aguiar
,
H.
Yao
, and
Y.
Liu
, “
Passive flow/noise control of a cylinder using metal foam
,”
in Proceedings of the 23rd International Congress on Sound and Vibration
(
2016
), Vol.
317
, pp.
1
8
.
12.
T. F.
Geyer
,
S.
Sharma
, and
E.
Sarradj
, “
Detached eddy simulation of the flow noise generation of cylinders with porous cover
,” AIAA Paper No. 2018-3472,
2018
.
13.
E. J. G.
Arcondoulis
,
Y.
Liu
,
Z.
Li
,
Y.
Yang
, and
Y.
Wang
, “
Structured porous material design for passive flow and noise control of cylinders in uniform flow
,”
Materials
12
,
2905
(
2019
).
14.
T. F.
Geyer
, “
Vortex shedding noise from finite, wall-mounted, circular cylinders modified with porous material
,”
AIAA J.
58
,
2014
(
2020
).
15.
B.
Ruck
,
K.
Klausmann
, and
T.
Wacker
, “
The flow around circular cylinders partially coated with porous media
,”
AIP Conf. Proc.
1453
,
49
54
(
2011
).
16.
C.
Xia
,
Z.
Wei
,
H.
Yuan
,
Q.
Li
, and
Z.
Yang
, “
POD analysis of the wake behind a circular cylinder coated with porous media
,”
J. Visualization
21
,
965
985
(
2018
).
17.
S.
Sadeghipour
,
S. A. S.
Ali
,
X.
Liu
,
M.
Azarpeyvand
, and
G. R.
Thorpe
, “
Control of flows around bluff bodies mediated by porous materials
,”
Exp. Therm. Fluid Sci.
114
,
110048
(
2020
).
18.
C.-H.
Bruneau
and
I.
Mortazavi
, “
Passive control of the flow around a square cylinder using porous media
,”
Int. J. Numer. Methods Fluids
46
,
415
433
(
2004
).
19.
C. H.
Bruneau
and
I.
Mortazavi
, “
Control of vortex shedding around a pipe section using a porous sheath
,”
Int. J. Offshore Polar Eng.
16
,
90
96
(
2006
).
20.
C.-H.
Bruneau
and
I.
Mortazavi
, “
Numerical modelling and passive flow control using porous media
,”
Comput. Fluids
37
,
488
498
(
2008
).
21.
U.
Janoske
, “
Vortex shedding frequency of porous circular tubes with varying porous properties along the circumference
,”
Int. J. Comput. Methods Exp. Meas.
4
,
464
473
(
2016
).
22.
C.
Xu
,
Y.
Mao
, and
Z.
Hu
, “
Numerical study of pore-scale flow and noise of an open cell metal foam
,”
Aerosp. Sci. Technol.
82–83
,
185
198
(
2018
).
23.
Y.
Yuan
,
K.
Xu
, and
K.
Zhao
, “
Numerical analysis of transport in porous media to reduce aerodynamic noise past a circular cylinder by application of porous foam
,”
J. Therm. Anal. Calorim.
141
,
1635
1646
(
2020
).
24.
P.
Zhang
,
Y.
Liu
,
Z.
Li
,
H.
Liu
, and
Y.
Yang
, “
Numerical study on reducing aerodynamic drag and noise of circular cylinders with non-uniform porous coatings
,”
Aerosp. Sci. Technol.
107
,
106308
(
2020
).
25.
Z.
Li
,
T.
Tang
,
Y.
Liu
,
E. J. G.
Arcondoulis
, and
Y.
Yang
, “
Numerical study of aerodynamic and aeroacoustic characteristics of flow over porous coated cylinders: Effects of porous properties
,”
Aerosp. Sci. Technol.
105
,
106042
(
2020
).
26.
J. S.
Humphreys
, “
On a circular cylinder in a steady wind at transition Reynolds numbers
,”
J. Fluid Mech.
9
,
603
612
(
1960
).
27.
M. S.
Bloor
, “
The transition to turbulence in the wake of a circular cylinder
,”
J. Fluid Mech.
19
,
290
304
(
1964
).
28.
J.
Howell
and
M.
Novak
, “
Vortex shedding from circular cylinders in turbulent flow
,” in
Wind Engineering
(
Elsevier
,
1980
), pp.
619
629
.
29.
C.
Norberg
, “
An experimental investigation of the flow around a circular cylinder: Influence of aspect ratio
,”
J. Fluid Mech.
258
,
287
316
(
1994
).
30.
C.
Norberg
, “
Fluctuating lift on a circular cylinder: Review and new measurements
,”
J. Fluids Struct.
17
,
57
96
(
2003
).
31.
M.
Zdravkovich
, “
Review and classification of various aerodynamic and hydrodynamic means for suppressing vortex shedding
,”
J. Wind Eng. Ind. Aerodyn.
7
,
145
189
(
1981
).
32.
S.
Bhattacharyya
and
A.
Singh
, “
Reduction in drag and vortex shedding frequency through porous sheath around a circular cylinder
,”
Int. J. Numer. Methods Fluids
65
,
683
698
(
2011
).
33.
S. A.
Showkat Ali
,
X.
Liu
, and
M.
Azarpeyvand
, “
Bluff body flow and noise control using porous media
,” AIAA Paper No. 2016-2754,
2016
.
34.
K.
Klausmann
and
B.
Ruck
, “
Drag reduction of circular cylinders by porous coating on the leeward side
,”
J. Fluid Mech.
813
,
382
411
(
2017
).
35.
I.
Ashtiani Abdi
,
K.
Hooman
, and
M.
Khashehchi
, “
A comparison between the separated flow structures near the wake of a bare and a foam-covered circular cylinder
,”
J. Fluids Eng.
136
,
121203
(
2014
).
36.
T. F.
Geyer
, “
Experimental evaluation of cylinder vortex shedding noise reduction using porous material
,”
Exp. Fluids
61
,
1
21
(
2020
).
37.
E.
Arcondoulis
,
D.
Ragni
,
A.
Rubio Carpio
,
F.
Avallone
,
Y.
Liu
,
Y.
Yang
, and
Z.
Li
, “
The internal and external flow fields of a structured porous coated cylinder and implications on flow-induced noise
,” AIAA Paper No. 2019-2648,
2019
.
38.
Z.
Li
,
T.
Tang
,
Y.
Liu
,
E. J. G.
Arcondoulis
, and
Y.
Yang
, “
Implementation of compressible porous-fluid coupling method in an aerodynamics and aeroacoustics code–Part II: Turbulent flow
,”
Appl. Math. Comput.
373
,
124988
(
2020
).
39.
E.
Sarradj
,
C.
Fritzsche
,
T.
Geyer
, and
J.
Giesler
, “
Acoustic and aerodynamic design and characterization of a small-scale aeroacoustic wind tunnel
,”
Appl. Acoust.
70
,
1073
1080
(
2009
).
40.
Z.
Xiao
and
K.
Luo
, “
Numerical simulations of tandem cylinders with subcritical spacing
,” AIAA Paper No. 2013-2209,
2013
.
41.
F. V.
Hutcheson
,
T. F.
Brooks
,
D. P.
Lockard
,
M. M.
Choudhari
, and
D. J.
Stead
, “
Acoustics and surface pressure measurements from tandem cylinder configurations
,” AIAA Paper No. 2014-2762,
2014
.
42.
H.
Liu
and
M.
Azarpeyvand
, “
Passive control of tandem cylinders flow and noise using porous coating
,” AIAA Paper No. 2016-2905,
2016
.
43.
E.
Arcondoulis
and
Y.
Liu
, “
The effect of porosity on the porous coated cylinder diameter
,”
in Proceedings of the Australian Acoustical Society (ACOUSTICS) AAS2018, Adelaide
(
2018
), Vol.
7
, p.
9
.
44.
C.
Teruna
,
F.
Manegar
,
F.
Avallone
,
D.
Ragni
,
D.
Casalino
, and
T.
Carolus
, “
Noise reduction mechanisms of an open-cell metal-foam trailing edge
,”
J. Fluid Mech.
898
,
A18
(
2020
).
45.
S. A. S.
Ali
,
M.
Azarpeyvand
, and
C. R. I.
da Silva
, “
Trailing-edge flow and noise control using porous treatments
,”
J. Fluid Mech.
850
,
83
119
(
2018
).
46.
N.
Arafa
and
A.
Mohany
, “
Wake structures and acoustic resonance excitation of a single finned cylinder in cross-flow
,”
J. Fluids Struct.
86
,
70
93
(
2019
).
47.
Z.
Hu
,
H.
Liu
,
N.
Chen
,
J.
Hu
, and
F.
Tong
, “
Vortex shedding noise and flow mode analysis of cylinder with full/partial porous coating
,”
Aerosp. Sci. Technol.
106
,
106154
(
2020
).
48.
P.
Welch
, “
The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms
,”
IEEE Trans. Audio Electroacoust.
15
,
70
73
(
1967
).
49.
B.
Etkin
,
G.
Korbacher
, and
R. T.
Keefe
, “
Acoustic radiation from a stationary cylinder in a fluid stream (aeolian tones)
,”
J. Acoust. Soc. Am.
29
,
30
36
(
1957
).
50.
D.
Casalino
and
M.
Jacob
, “
Prediction of aerodynamic sound from circular rods via spanwise statistical modelling
,”
J. Sound Vib.
262
,
815
844
(
2003
).
51.
R.
Maryami
,
S. A.
Showkat Ali
,
M.
Azarpeyvand
, and
A.
Afshari
, “
Turbulent flow interaction with a circular cylinder
,”
Phys. Fluids
32
,
015105
(
2020
).
52.
T.
Geyer
,
E.
Sarradj
, and
C.
Fritzsche
, “
Measurement of the noise generation at the trailing edge of porous airfoils
,”
Exp. Fluids
48
,
291
308
(
2010
).
53.
G. S.
Triantafyllou
,
M. S.
Triantafyllou
, and
C.
Chryssostomidis
, “
On the formation of vortex streets behind stationary cylinders
,”
J. Fluid Mech.
170
,
461
477
(
1986
).
54.
W. S.
Don
and
A.
Solomonoff
, “
Accuracy and speed in computing the Chebyshev collocation derivative
,”
SIAM J. Sci. Comput.
16
,
1253
1268
(
1995
).
55.
D. F.
Young
,
B. R.
Munson
,
T. H.
Okiishi
, and
W. W.
Huebsch
,
A Brief Introduction to Fluid Mechanics
(
John Wiley & Sons
,
2010
).
56.
O.
Son
and
O.
Cetiner
, “
Drag prediction in the near wake of a circular cylinder based on DPIV Data
,”
J. Appl. Fluid Mech.
9
,
1963
1968
(
2016
).
57.
H.
Schlichting
and
K.
Gersten
,
Boundary-Layer Theory
(
MacGraw Hill
,
New York
,
1979
).
You do not currently have access to this content.