This study presents a novel computational fluid dynamics (CFD) model to investigate important aspects of the complex high-solids enzymatic hydrolysis (HSEH) process. The uniqueness of this CFD model lies in integrating the biochemical reaction taking place in the secondary phase and the corresponding mass transfer of the products from the secondary phase to the non-Newtonian primary phase, while dual axial impellers blend the multiphase system. The distribution of the reactants and products in the non-Newtonian primary phase affects the overall conversion of glucan to glucose, which, in turn, affects the commercial deployment of these systems for the production of renewable sugars. We investigated the effect of slurry viscosity on insoluble and soluble solids distribution, the impact of initial insoluble solids loading on total solids distribution, and varying the initial chemical composition of the insoluble solids on the total solids distribution. The comprehensive CFD model results show that variations in the chemical composition of the insoluble solids and the solids loading can each have a pronounced effect on the distribution of solids. This behavior would then affect the rate and extent of conversion of insoluble solids to soluble solids. Thus, the comprehensive CFD model can account for the interactions between independent variables, facilitating the design of small and large-scale reactors, while improving the conversion of insoluble solids to soluble solids. This novel CFD model thus represents the combined effects of key factors that influence HSEH in a realistic process environment.

1.
Andersson
,
B.
,
Andersson
,
R.
,
Håkansson
,
L.
,
Mortensen
,
M.
,
Sudiyo
,
R.
, and
Van Wachem
,
B.
,
Computational Fluid Dynamics for Engineers
(
Cambridge University Press
,
2011
).
2.
ANSYS FLUENT
, ANSYS Fluent User's Guide, Release 18 (
ANSYS, Inc.
,
Lebanon, NH
,
2018
).
3.
Agrawal
,
R.
,
Bhadana
,
B.
,
Mathur
,
A. S.
,
Kumar
,
R.
,
Gupta
,
R. P.
, and
Satlewal
,
A.
, “
Improved enzymatic hydrolysis of pilot scale pretreated rice straw at high total solids loading
,”
Front. Energy Res.
6
,
115
(
2018
).
4.
Benson
,
R. A. C.
and
Benech
,
R. O.
, “
Fed batch process for biochemical conversion of lignocellulosic biomass to ethanol
,” Green Field Ethanol Inc., Assignee, U.S. Patent 2010/0255554 A1 (October 7,
2010
).
5.
Branco
,
R. H. R.
,
Serafim
,
L. S.
, and
Xavier
,
A. M. R. B.
, “
Second generation bioethanol production: On the use of pulp and paper industry wastes as feedstock
,”
Fermentation
5
(
1
),
4
(
2019
).
6.
Cai
,
C. M.
,
Zhang
,
T.
,
Kumar
,
R.
, and
Wyman
,
C. E.
, “
Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass
,”
J. Chem. Technol. Biotechnol.
89
(
1
),
2
10
(
2014
).
7.
Carvajal
,
D.
,
Marchisio
,
D. L.
,
Bensaid
,
S.
, and
Fino
,
D.
, “
Enzymatic hydrolysis of lignocellulosic biomasses via CFD and experiments
,”
Ind. Eng. Chem. Res.
51
(
22
),
7518
7525
(
2011
).
8.
Carvalheiro
,
F.
,
Duarte
,
L. C.
, and
Girio
,
F. M.
, “
Hemicellulose biorefineries: A review on biomass pretreatments
,”
J. Sci. Ind. Res.
67
(
11
),
849
864
(
2008
).
9.
Chen
,
H.-Z.
and
Liu
,
Z.-H.
, “
Enzymatic hydrolysis of lignocellulosic biomass from low to high solids loading
,”
Eng. Life Sci.
17
(
5
),
489
499
(
2017
).
10.
Dasari
,
R. K.
,
Dunaway
,
K.
, and
Berson
,
R. E.
, “
A scraped surface bioreactor for enzymatic saccharification of pretreated corn stover slurries
,”
Energy Fuels
23
(
1
),
492
497
(
2009
).
11.
Di Risio
,
S.
,
Hu
,
C. S.
,
Saville
,
B. A.
,
Liao
,
D.
, and
Lortie
,
J.
, “
Large-scale, high-solids enzymatic hydrolysis of steam-exploded poplar
,”
Biofuels, Bioprod. Biorefin.
5
(
6
),
609
620
(
2011
).
12.
Fathi Roudsari
,
S.
,
Dhib
,
R.
, and
Ein-Mozaffari
,
F.
, “
Using a novel CFD model to assess the effect of mixing parameters on emulsion polymerization
,”
Macromol. React. Eng.
10
(
2
),
108
122
(
2016
).
13.
Fathi Roudsari
,
S.
,
Turcotte
,
G.
,
Dhib
,
R.
, and
Ein-Mozaffari
,
F.
, “
CFD modeling of the mixing of water in oil emulsions
,”
Comput. Chem. Eng.
45
,
124
136
(
2012
).
14.
Gan
,
Q.
,
Allen
,
S. J.
, and
Taylor
,
G.
, “
Kinetic dynamics in heterogeneous enzymatic hydrolysis of cellulose: An overview, an experimental study and mathematical modelling
,”
Process Biochem.
38
(
7
),
1003
1018
(
2003
).
15.
Gaona
,
A.
, “
Investigating slurry behaviour during high solids enzymatic hydrolysis via CFD
,” Ph.D. thesis,
University of Toronto
,
Canada
,
2019
.
16.
Gaona
,
A.
,
Lawryshyn
,
Y.
, and
Saville
,
B.
, “
The effect of fed-batch operation and rotational speed on high-solids enzymatic hydrolysis of hardwood substrates
,”
Ind. Biotechnol.
11
(
5
),
277
283
(
2015
).
17.
Gaona
,
A.
,
Lawryshyn
,
Y.
, and
Saville
,
B.
, “
Enhancing biomass hydrolyiss for biofuel production through hydrodynamic modelling and reactor design
,”
Energy Sci. Eng.
7
,
1823
1837
(
2019
).
18.
Gu
,
D.
,
C.
Cheng
,
Z.
Liu
, and
Y.
Wang
, “
Numerical simulation of solid-liquid mixing characteristics in a stirred tank with fractal impellers
,”
Adv. Powder Technol.
30
(
10
),
2126
2138
(
2019
).
19.
Hodge
,
D. B.
,
Karim
,
M. N.
,
Schell
,
D. J.
, and
McMillan
,
J. D.
, “
Model-based fed-batch for high-solids enzymatic cellulose hydrolysis
,”
Appl. Biochem. Biotechnol.
152
(
1
),
88
107
(
2009
).
20.
Hou
,
W.
,
An
,
R.
,
Zhang
,
J.
, and
Bao
,
J.
, “
On-site measurement and modeling of rheological property of corn stover hydrolysate at high solids content
,”
Biochem. Eng. J.
107
,
61
65
(
2016
).
21.
Jeoh
,
T.
,
Cardona
,
M. J.
,
Karuna
,
N.
,
Mudinoor
,
A. R.
, and
Nill
,
J.
, “
Mechanistic kinetic models of enzymatic cellulose hydrolysis-A review
,”
Biotechnol. Bioeng.
114
(
7
),
1369
1385
(
2017
).
22.
Jung
,
Y. H.
,
Park
,
H. M.
,
Kim
,
D. H.
,
Yang
,
J.
, and
Kim
,
K. H.
, “
Fed-batch enzymatic saccharification of high solids pretreated lignocellulose for obtaining high titers and high yields of glucose
,”
Appl. Biochem. Biotechnol
182
(
3
),
1108
1120
(
2017
).
23.
Liguori
,
R.
,
Ventorino
,
V.
,
Pepe
,
O.
, and
Faraco
,
V.
, “
Bioreactors for lignocellulose conversion into fermentable sugars for production of high added value products
,”
Appl. Microbiol. Biotechnol.
100
(
2
),
597
611
(
2016
).
24.
Luo
,
X.
and
Zhu
,
J. Y.
, “
Effects of drying-induced fiber hornification on enzymatic saccharification of lignocelluloses
,”
Enzyme Microb. Technol.
48
,
92
96
(
2011
).
25.
Maluta
,
F.
,
Paglianti
,
A.
, and
Montante
,
G.
, “
Modelling of biohydrogen production in stirred fermenters by Computational Fluid Dynamics
,”
Process Saf. Environ. Prot.
125
,
342
357
(
2019
).
26.
Mishra
,
P.
and
Ein-Mozaffari
,
F.
, “
Using computational fluid dynamics to analyze the performance of the Maxblend impeller in solid-liquid mixing operations
,”
Int. J. Multiphase Flow
91
,
194
207
(
2017
).
27.
Nill
,
J.
,
Karuna
,
N.
, and
Jeoh
,
T.
, “
The impact of kinetic parameters on cellulose hydrolysis rates
,”
Process Biochem.
74
,
108
117
(
2018
).
28.
Ojaniemi
,
U.
,
Puranen
,
J.
,
Manninen
,
M.
,
Gorshkova
,
E.
, and
Louhi-Kultanen
,
M.
, “
Hydrodynamics and kinetics in semi-batch stirred tank precipitation of l-glutamic acid based on pH shift with mineral acids
,”
Chem. Eng. Sci.
178
,
167
182
(
2018
).
29.
Olkiewicz
,
M.
,
Tylkowski
,
B.
,
Montornés
,
J. M.
,
Garcia-Valls
,
R.
, and
Gulaczyk
,
I.
, “
Modelling of enzyme kinetics: Cellulose enzymatic hydrolysis case
,”
Phys. Sci. Rev.
(published online 2020).
30.
Peker
,
S.
,
Helvacı
,
Ş.
,
Yener
,
H. B.
,
İkizler
,
B.
, and
Alparslan
,
A.
, “
Non-Newtonian behavior of solid–liquid suspensions
,” in
Solid-Liquid Two Phase Flow
(
Elsevier Science
,
Amsterdam
,
2008
), pp.
71
166
.
31.
Pohar
,
A.
,
Naneh
,
O.
,
Bajec
,
D.
, and
Likozar
,
B.
, “
Chemical reactor/compounding vessel fingerprinting: Scale-up/down considerations for homogeneous and heterogeneous mixing using computational fluid dynamics
,”
Chem. Eng. Res. Des.
163
,
125
137
(
2020
).
32.
Pino
,
M. S.
,
Rodríguez-Jasso
,
R. M.
,
Michelin
,
M.
,
Flores-Gallegos
,
A. C.
,
Morales-Rodriguez
,
R.
,
Teixeira
,
J. A.
, and
Ruiz
,
H. A.
, “
Bioreactor design for enzymatic hydrolysis of biomass under the biorefinery concept
,”
Chem. Eng. J.
347
,
119
136
(
2018
).
33.
Rosales-Calderon
,
O.
and
Arantes
,
V.
, “
A review on commercial-scale high-value products that can be produced alongside cellulosic ethanol
,”
Biotechnol. Biofuels
12
(
1
),
240
(
2019
).
34.
Russ
,
D. C.
,
Thomas
,
J. M. D.
,
Miller
,
Q. S.
, and
Berson
,
R. E.
, “
Predicting power for a scaled-up non-Newtonian biomass slurry
,”
Chem. Eng. Technol.
38
(
1
),
53
60
(
2015
).
35.
Sitaram
,
H.
,
Danes
,
N.
,
Lishheske
,
J. J.
,
Stickel
,
J. J.
, and
Sprague
,
M. A.
, “
Coupled CFD and chemical kinetics simulations of cellulosic-biomass enzymatic hydrolysis: Mathematical-model development and validation
,”
Chem. Eng. Sci.
206
,
348
360
(
2019
).
36.
Spann
,
R.
,
Glibstrup
,
J.
,
Pellicer-Alborch
,
K.
,
Junne
,
S.
,
Neubauer
,
P.
,
Roca
,
C.
,
Kold
,
D.
,
Lantz
,
A. E.
,
Sin
,
G.
,
Gernaey
,
K. V.
, and
Krühne
,
U.
, “
CFD predicted pH gradients in lactic acid bacteria cultivations
,”
Biotechnol. Bioeng.
116
(
4
),
769
780
(
2019
).
37.
Um
,
B.-H.
and
Hanley
,
T. R.
, “
A CFD model for predicting the flow patterns of viscous fluids in a bioreactor under various operating conditions
,”
Korean J. Chem. Eng.
25
(
5
),
1094
1102
(
2008
).
38.
Van Dyk
,
J. S.
and
Pletschke
,
B. I.
, “
A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-Factors affecting enzymes, conversion and synergy
,”
Biotechnol. Adv.
30
(
6
),
1458
1480
(
2012
).
39.
Wu
,
W.-C.
,
Cui
,
J.
,
Jiang
,
H.
,
Jiang
,
H.-B.
, and
Li
,
C.-Z.
, “
Computational fluid dynamics simulation and experimental analysis of ultrafine powder suspension
,”
Rare Metals
39
(
7
),
850
860
(
2020
).
40.
Xie
,
L.
,
Liu
,
Q.
, and
Luo
,
Z.-H.
, “
A multiscale CFD-PBM coupled model for the kinetics and liquid-liquid dispersion behavior in a suspension polymerization stirred tank
,”
Chem. Eng. Res. Des.
130
,
1
17
(
2018
).
41.
Xie
,
L.
and
Luo
,
Z.-H.
, “
Multiscale computational fluid dynamics-population balance model coupled system of atom transfer radical suspension polymerization in stirred tank reactors
,”
Ind. Eng. Chem. Res.
56
(
16
),
4690
4702
(
2017
).
42.
Zhang
,
L.-P.
,
Zhang
,
J.
,
Li
,
C.-H.
, and
Bao
,
J.
, “
Rheological characterization and CFD modeling of corn stover-water mixing system at high solids loading for dilute acid pretreatment
,”
Biochem. Eng. J.
90
,
324
332
(
2014
).

Supplementary Material

You do not currently have access to this content.