The observation of a wave group persisting for more than 200 periods in the direct numerical simulation of nonlinear unidirectional irregular water waves in deep water is discussed. The simulation conditions are characterized by parameters realistic for broad-banded waves in the sea. Through solution of the associated scattering problem for the nonlinear Schrödinger equation, the group is identified as the intense envelope soliton with remarkably stable parameters. Most of the extreme waves occur on top of this group, resulting in higher and longer rogue wave events.
References
1.
K.
Dysthe
, H. E.
Krogstad
, and P.
Muller
, “Oceanic rogue waves
,” Annu. Rev. Fluid. Mech.
40
, 287
–310
(2008
).2.
C.
Kharif
, E.
Pelinovsky
, and A.
Slunyaev
, Rogue Waves in the Ocean
(Springer-Verlag
, Berlin/Heidelberg
, 2009
).3.
M.
Onorato
, S.
Residori
, U.
Bortolozzo
, A.
Montinad
, and F.
Arecchi
, “Rogue waves and their generating mechanisms in different physical contexts
,” Phys. Rep.
528
, 47
–89
(2013
).4.
M.
Tanaka
, “A method of studying nonlinear random field of surface gravity waves by direct numerical simulation
,” Fluid Dyn. Res.
28
, 41
–60
(2001
).5.
D.
Chalikov
, Numerical Modeling of Sea Waves
(Springer
, New York
, 2016
).6.
G.
Ducrozet
, F.
Bonnefoy
, D. L.
Touze
, and P.
Ferrant
, “3-D HOS simulations of extreme waves in open seas
,” Nat. Hazards Earth Syst. Sci.
7
, 109
–122
(2007
).7.
W.
Xiao
, Y.
Liu
, G.
Wu
, and D.
Yue
, “Rogue wave occurrence and dynamics by direct simulations of nonlinear wave-field evolution
,” J. Fluid Mech.
720
, 357
–392
(2013
).8.
E.
Bitner-Gregersen
and A.
Toffoli
, “Occurrence of rogue sea states and consequences for marine structures
,” Ocean Dyn.
64
, 1457
–1468
(2014
).9.
J.
Brennan
, J.
Dudley
, and F.
Dias
, “Extreme waves in crossing sea states
,” Int. J. Ocean Coastal Eng.
1
, 1850001
(2018
).10.
A.
Sergeeva
and A.
Slunyaev
, “Rogue waves, rogue events and extreme wave kinematics in spatio-temporal fields of simulated sea states
,” Nat. Hazards Earth Syst. Sci.
13
, 1759
–1771
(2013
).11.
A.
Slunyaev
, A.
Sergeeva
, and I.
Didenkulova
, “Rogue events in spatiotemporal numerical simulations of unidirectional waves in basins of different depth
,” Nat. Hazards
84
, 549
–565
(2016
).12.
A.
Slunyaev
and A.
Kokorina
, “Soliton groups as the reason for extreme statistics of unidirectional sea waves
,” J. Ocean Eng. Mar. Energy
3
, 395
–408
(2017
).13.
B.
West
, K.
Brueckner
, R.
Janda
, D.
Milder
, and R.
Milton
, “A new numerical method for surface hydrodynamics
,” J. Geophys. Res.
92
, 11803
–11824
, (1987
).14.
A.
Dyachenko
and V.
Zakharov
, “On the formation of freak waves on the surface of deep water
,” JETP Lett.
88
, 307
–311
(2008
).15.
A.
Slunyaev
, “Numerical simulation of limiting envelope solitons of gravity waves on deep water
,” JETP
109
, 676
–686
(2009
).16.
A.
Slunyaev
, G.
Clauss
, M.
Klein
, and M.
Onorato
, “Simulations and experiments of short intense envelope solitons of surface water waves
,” Phys. Fluids
25
, 067105
(2013
).17.
A.
Slunyaev
, M.
Klein
, and G.
Clauss
, “Laboratory and numerical study of intense envelope solitons of water waves: Generation, reflection from a wall and collisions
,” Phys. Fluids
29
, 047103
(2017
).18.
A.
Osborne
, D.
Resio
, A.
Costa
, S. P.
de Leon
, and E.
Chirivi
, “Highly nonlinear wind waves in Currituck Sound: Dense breather turbulence in random ocean waves
,” Ocean Dyn.
69
, 187
–219
(2019
).19.
I.
Redor
, E.
Barthelemy
, H.
Michallet
, M.
Onorato
, and N.
Mordant
, “Experimental evidence of a hydrodynamic soliton gas
,” Phys. Rev. Lett.
122
, 214502
(2019
).20.
P.
Suret
, A.
Tikan
, F.
Bonnefoy
, F.
Copie
, G.
Ducrozet
, A.
Gelash
, G.
Prabhudesai
, G.
Michel
, A.
Cazaubiel
, E.
Falcon
, G.
El
, and S.
Randoux
, “Nonlinear spectral synthesis of soliton gas in deep-water surface gravity waves
,” Phys. Rev. Lett.
125
, 264101
(2020
).21.
A.
Slunyaev
, “Nonlinear analysis and simulations of measured freak wave time series
,” Eur. J. Mech. B
25
, 621
–635
(2006
).22.
A.
Slunyaev
, “Analysis of the nonlinear spectrum of intense sea waves with the purpose of extreme wave prediction
,” Radiophys. Quantum Electron.
61
, 1
–21
(2018
).23.
A.
Osborne
, E.
Segre
, G.
Boffetta
, and L.
Cavaleri
, “Soliton basis states in shallow-water ovean surface waves
,” Phys. Rev. Lett.
67
, 592
–595
(1991
).24.
A.
Osborne
and M.
Petti
, “Laboratory-generated, shallow-water surface waves: Analysis using the periodic, inverse scattering transform
,” Phys. Fluids
6
, 1727
–1744
(1994
).25.
A.
Osborne
, Nonlinear Ocean Waves and the Inverse Scattering Transform
(Academic Press
, 2010
).26.
A.
Osborne
, M.
Onorato
, and M.
Serio
, “Nonlinear Fourier analysis of deep-water, random surface waves: Theoretical formulation and experimental observations of rogue waves
,” in Proc. 14th Aha Huliko'a Winter Workshop
(Honolulu, Hawaii, 2005
).27.
A.
Islas
and C.
Schober
, “Predicting rogue waves in random oceanic sea states
,” Phys. Fluids
17
, 031701
(2005
).28.
C.
Schober
, “Melnikov analysis and inverse spectral analysis of rogue waves in deep water
,” Eur. J. Mech. B
25
, 602
–620
(2006
).29.
M.
Brühl
and H.
Oumeraci
, “Analysis of long-period cosine-wave dispersion in very shallow water using nonlinear Fourier transform based on KdV equation
,” Appl. Ocean Res.
61
, 81
–91
(2016
).30.
S.
Randoux
, P.
Suret
, and G.
El
, “Inverse scattering transform analysis of rogue waves using local periodization procedure
,” Sci. Rep.
6
, 29238
(2016
).31.
R.
Mullyadzhanov
and A.
Gelash
, “Direct scattering transform of large wave packets
,” Opt. Lett.
44
, 5298
–5301
(2019
).32.
K.
Hasselmann
, T.
Barnett
, E.
Bouws
, H.
Carlson
, D.
Cartwright
, K.
Enke
, J.
Ewing
, H.
Gienapp
, D.
Hasselmann
, P.
Kruseman
, A.
Meerburg
, P.
Mller
, D.
Olbers
, K.
Richter
, W.
Sell
, and H.
Walden
, “Measurements of wind-wave growth and swell decay during the joint north sea wave project (JONSWAP)
,” Dtsch. Hydrogh. Zeitschr. Suppl.
12
, A8
(1973
).33.
M.
Onorato
, A.
Osborne
, M.
Serio
, and S.
Bertone
, “Freak waves in random oceanic sea states
,” Phys. Rev. Lett.
86
, 5831
–5834
(2001
).34.
P.
Janssen
, “Nonlinear four-wave interactions and freak waves
,” J. Phys. Oceanogr.
33
, 863
–884
(2003
).35.
M.
Serio
, M.
Onorato
, A.
Osborne
, and P.
Janssen
, “On the computation of the Benjamin-Feir Index
,” Il Nuovo Cimento
28
, 893
–903
(2005
).36.
D.
Clamond
, M.
Francius
, J.
Grue
, and C.
Kharif
, “Long time interaction of envelope solitons and freak wave formations
,” Eur. J. Mech. B
25
, 536
–553
(2006
).37.
A.
Slunyaev
, E.
Pelinovsky
, and C. G.
Soares
, “Modeling freak waves from the North Sea
,” Appl. Ocean Res.
27
, 12
–22
(2005
).38.
K.
Trulsen
, “Weakly nonlinear and stochastic properties of ocean wave fields: Application to an extreme wave event
,” in Waves in Geophysical Fluids: Tsunamis, Rogue Waves, Internal Waves and Internal Tides
, edited by K. T. J.
Grue
(Springer Wein
, 2006
).39.
A.
Slunyaev
, E.
Pelinovsky
, and C. G.
Soares
, “Reconstruction of extreme events through numerical simulations
,” J. OMAE
136
, 011302
(2014
).40.
M.
Ablowitz
, D.
Kaup
, A.
Newell
, and H.
Segur
, “The inverse scattering transform—Fourier analysis for nonlinear problems
,” Stud. Appl. Math.
53
, 249
–315
(1974
).41.
K.
Trulsen
, “Simulating the spatial evolution of a measured time series of a freak wave
,” in Proc. Workshop Rogue Waves 2000
, edited by G. A. M.
Olagnon
(Ifremer
, France
, 2001
), pp. 265
–274
.42.
A.
Mussot
, A.
Kudlinski
, M.
Kolobov
, E.
Louvergneaux
, M.
Douay
, and M.
Taki
, “Observation of extreme temporal events in CW-pumped supercontinuum
,” Opt. Express
17
, 17010
–17015
(2009
).43.
D.
Kachulin
, A.
Dyachenko
, and S.
Dremov
, “Multiple soliton interactions on the surface of deep water
,” Fluids
5
, 65
(2020
).44.
W.
Fujimoto
, T.
Waseda
, and A.
Webb
, “Impact of the four-wave quasi-resonance on freak wave shapes in the ocean
,” Ocean Dyn.
69
, 101
–121
(2019
).45.
A.
Kokorina
and A.
Slunyaev
, “Lifetimes of rogue wave events in direct numerical simulations of deep-water irregular sea waves
,” Fluids
4
, 70
(2019
).46.
K.
Henderson
, D.
Peregrine
, and J.
Dold
, “Unsteady water wave modulations: Fully nonlinear solutions and comparison with the nonlinear Schrodinger equation
,” Wave Motion
29
, 341
–361
(1999
).47.
A.
Chabchoub
, N.
Hoffmann
, and N.
Akhmediev
, “Rogue wave observation in a water wave tank
,” Phys. Rev. Lett.
106
, 204502
(2011
).48.
A.
Cazaubiel
, G.
Michel
, S.
Lepot
, B.
Semin
, S.
Aumaitre
, M.
Berhanu
, F.
Bonnefoy
, and E.
Falcon
, “Coexistence of solitons and extreme events in deep water surface waves
,” Phys. Rev. Fluids
3
, 114802
(2018
).49.
D.
Agafontsev
and A.
Gelash
, “Rogue waves with rational proles in unstable condensate and its solitonic model
,” e-print arXiv:2009.12951 (2020
).50.
A.
Calini
and C.
Schober
, “Characterizing JONSWAP rogue waves and their statistics via inverse spectral data
,” Wave Motion
71
, 5
–17
(2017
).51.
N.
Akhmediev
, J. M.
Soto-Crespo
, and N.
Devine
, “Breather turbulence versus soliton turbulence: Rogue waves, probability density functions, and spectral features
,” Phys. Rev. E
94
, 022212
(2016
).52.
B.
Kibler
, J.
Fatome
, C.
Finot
, G.
Millot
, F.
Dias
, G.
Genty
, N.
Akhmediev
, and J.
Dudley
, “The Peregrine soliton in nonlinear fibre optics
,” Nat. Phys.
6
, 790
–795
(2010
).53.
A.
Tikan
, “Effect of local Peregrine soliton emergence on statistics of random waves in the one-dimensional focusing nonlinear Schrödinger equation
,” Phys. Rev. E
101
, 012209
(2020
).54.
I.
Chekhovskoy
, O.
Shtyrina
, M.
Fedoruk
, S.
Medvedev
, and S.
Turitsyn
, “Nonlinear Fourier transform for analysis of coherent structures in dissipative systems
,” Phys. Rev. Lett.
122
, 153901
(2019
).55.
S.
Turitsyn
, I.
Chekhovskoy
, and M.
Fedoruk
, “Nonlinear Fourier transform for characterization of the coherent structures in optical microresonators
,” Opt. Lett
45
, 3059
–3062
(2020
).© 2021 Author(s).
2021
Author(s)
You do not currently have access to this content.