The observation of a wave group persisting for more than 200 periods in the direct numerical simulation of nonlinear unidirectional irregular water waves in deep water is discussed. The simulation conditions are characterized by parameters realistic for broad-banded waves in the sea. Through solution of the associated scattering problem for the nonlinear Schrödinger equation, the group is identified as the intense envelope soliton with remarkably stable parameters. Most of the extreme waves occur on top of this group, resulting in higher and longer rogue wave events.

1.
K.
Dysthe
,
H. E.
Krogstad
, and
P.
Muller
, “
Oceanic rogue waves
,”
Annu. Rev. Fluid. Mech.
40
,
287
310
(
2008
).
2.
C.
Kharif
,
E.
Pelinovsky
, and
A.
Slunyaev
,
Rogue Waves in the Ocean
(
Springer-Verlag
,
Berlin/Heidelberg
,
2009
).
3.
M.
Onorato
,
S.
Residori
,
U.
Bortolozzo
,
A.
Montinad
, and
F.
Arecchi
, “
Rogue waves and their generating mechanisms in different physical contexts
,”
Phys. Rep.
528
,
47
89
(
2013
).
4.
M.
Tanaka
, “
A method of studying nonlinear random field of surface gravity waves by direct numerical simulation
,”
Fluid Dyn. Res.
28
,
41
60
(
2001
).
5.
D.
Chalikov
,
Numerical Modeling of Sea Waves
(
Springer
,
New York
,
2016
).
6.
G.
Ducrozet
,
F.
Bonnefoy
,
D. L.
Touze
, and
P.
Ferrant
, “
3-D HOS simulations of extreme waves in open seas
,”
Nat. Hazards Earth Syst. Sci.
7
,
109
122
(
2007
).
7.
W.
Xiao
,
Y.
Liu
,
G.
Wu
, and
D.
Yue
, “
Rogue wave occurrence and dynamics by direct simulations of nonlinear wave-field evolution
,”
J. Fluid Mech.
720
,
357
392
(
2013
).
8.
E.
Bitner-Gregersen
and
A.
Toffoli
, “
Occurrence of rogue sea states and consequences for marine structures
,”
Ocean Dyn.
64
,
1457
1468
(
2014
).
9.
J.
Brennan
,
J.
Dudley
, and
F.
Dias
, “
Extreme waves in crossing sea states
,”
Int. J. Ocean Coastal Eng.
1
,
1850001
(
2018
).
10.
A.
Sergeeva
and
A.
Slunyaev
, “
Rogue waves, rogue events and extreme wave kinematics in spatio-temporal fields of simulated sea states
,”
Nat. Hazards Earth Syst. Sci.
13
,
1759
1771
(
2013
).
11.
A.
Slunyaev
,
A.
Sergeeva
, and
I.
Didenkulova
, “
Rogue events in spatiotemporal numerical simulations of unidirectional waves in basins of different depth
,”
Nat. Hazards
84
,
549
565
(
2016
).
12.
A.
Slunyaev
and
A.
Kokorina
, “
Soliton groups as the reason for extreme statistics of unidirectional sea waves
,”
J. Ocean Eng. Mar. Energy
3
,
395
408
(
2017
).
13.
B.
West
,
K.
Brueckner
,
R.
Janda
,
D.
Milder
, and
R.
Milton
, “
A new numerical method for surface hydrodynamics
,”
J. Geophys. Res.
92
,
11803
11824
, (
1987
).
14.
A.
Dyachenko
and
V.
Zakharov
, “
On the formation of freak waves on the surface of deep water
,”
JETP Lett.
88
,
307
311
(
2008
).
15.
A.
Slunyaev
, “
Numerical simulation of limiting envelope solitons of gravity waves on deep water
,”
JETP
109
,
676
686
(
2009
).
16.
A.
Slunyaev
,
G.
Clauss
,
M.
Klein
, and
M.
Onorato
, “
Simulations and experiments of short intense envelope solitons of surface water waves
,”
Phys. Fluids
25
,
067105
(
2013
).
17.
A.
Slunyaev
,
M.
Klein
, and
G.
Clauss
, “
Laboratory and numerical study of intense envelope solitons of water waves: Generation, reflection from a wall and collisions
,”
Phys. Fluids
29
,
047103
(
2017
).
18.
A.
Osborne
,
D.
Resio
,
A.
Costa
,
S. P.
de Leon
, and
E.
Chirivi
, “
Highly nonlinear wind waves in Currituck Sound: Dense breather turbulence in random ocean waves
,”
Ocean Dyn.
69
,
187
219
(
2019
).
19.
I.
Redor
,
E.
Barthelemy
,
H.
Michallet
,
M.
Onorato
, and
N.
Mordant
, “
Experimental evidence of a hydrodynamic soliton gas
,”
Phys. Rev. Lett.
122
,
214502
(
2019
).
20.
P.
Suret
,
A.
Tikan
,
F.
Bonnefoy
,
F.
Copie
,
G.
Ducrozet
,
A.
Gelash
,
G.
Prabhudesai
,
G.
Michel
,
A.
Cazaubiel
,
E.
Falcon
,
G.
El
, and
S.
Randoux
, “
Nonlinear spectral synthesis of soliton gas in deep-water surface gravity waves
,”
Phys. Rev. Lett.
125
,
264101
(
2020
).
21.
A.
Slunyaev
, “
Nonlinear analysis and simulations of measured freak wave time series
,”
Eur. J. Mech. B
25
,
621
635
(
2006
).
22.
A.
Slunyaev
, “
Analysis of the nonlinear spectrum of intense sea waves with the purpose of extreme wave prediction
,”
Radiophys. Quantum Electron.
61
,
1
21
(
2018
).
23.
A.
Osborne
,
E.
Segre
,
G.
Boffetta
, and
L.
Cavaleri
, “
Soliton basis states in shallow-water ovean surface waves
,”
Phys. Rev. Lett.
67
,
592
595
(
1991
).
24.
A.
Osborne
and
M.
Petti
, “
Laboratory-generated, shallow-water surface waves: Analysis using the periodic, inverse scattering transform
,”
Phys. Fluids
6
,
1727
1744
(
1994
).
25.
A.
Osborne
,
Nonlinear Ocean Waves and the Inverse Scattering Transform
(
Academic Press
,
2010
).
26.
A.
Osborne
,
M.
Onorato
, and
M.
Serio
, “
Nonlinear Fourier analysis of deep-water, random surface waves: Theoretical formulation and experimental observations of rogue waves
,” in
Proc. 14th Aha Huliko'a Winter Workshop
(Honolulu, Hawaii,
2005
).
27.
A.
Islas
and
C.
Schober
, “
Predicting rogue waves in random oceanic sea states
,”
Phys. Fluids
17
,
031701
(
2005
).
28.
C.
Schober
, “
Melnikov analysis and inverse spectral analysis of rogue waves in deep water
,”
Eur. J. Mech. B
25
,
602
620
(
2006
).
29.
M.
Brühl
and
H.
Oumeraci
, “
Analysis of long-period cosine-wave dispersion in very shallow water using nonlinear Fourier transform based on KdV equation
,”
Appl. Ocean Res.
61
,
81
91
(
2016
).
30.
S.
Randoux
,
P.
Suret
, and
G.
El
, “
Inverse scattering transform analysis of rogue waves using local periodization procedure
,”
Sci. Rep.
6
,
29238
(
2016
).
31.
R.
Mullyadzhanov
and
A.
Gelash
, “
Direct scattering transform of large wave packets
,”
Opt. Lett.
44
,
5298
5301
(
2019
).
32.
K.
Hasselmann
,
T.
Barnett
,
E.
Bouws
,
H.
Carlson
,
D.
Cartwright
,
K.
Enke
,
J.
Ewing
,
H.
Gienapp
,
D.
Hasselmann
,
P.
Kruseman
,
A.
Meerburg
,
P.
Mller
,
D.
Olbers
,
K.
Richter
,
W.
Sell
, and
H.
Walden
, “
Measurements of wind-wave growth and swell decay during the joint north sea wave project (JONSWAP)
,”
Dtsch. Hydrogh. Zeitschr. Suppl.
12
,
A8
(
1973
).
33.
M.
Onorato
,
A.
Osborne
,
M.
Serio
, and
S.
Bertone
, “
Freak waves in random oceanic sea states
,”
Phys. Rev. Lett.
86
,
5831
5834
(
2001
).
34.
P.
Janssen
, “
Nonlinear four-wave interactions and freak waves
,”
J. Phys. Oceanogr.
33
,
863
884
(
2003
).
35.
M.
Serio
,
M.
Onorato
,
A.
Osborne
, and
P.
Janssen
, “
On the computation of the Benjamin-Feir Index
,”
Il Nuovo Cimento
28
,
893
903
(
2005
).
36.
D.
Clamond
,
M.
Francius
,
J.
Grue
, and
C.
Kharif
, “
Long time interaction of envelope solitons and freak wave formations
,”
Eur. J. Mech. B
25
,
536
553
(
2006
).
37.
A.
Slunyaev
,
E.
Pelinovsky
, and
C. G.
Soares
, “
Modeling freak waves from the North Sea
,”
Appl. Ocean Res.
27
,
12
22
(
2005
).
38.
K.
Trulsen
, “
Weakly nonlinear and stochastic properties of ocean wave fields: Application to an extreme wave event
,” in
Waves in Geophysical Fluids: Tsunamis, Rogue Waves, Internal Waves and Internal Tides
, edited by
K. T. J.
Grue
(
Springer Wein
,
2006
).
39.
A.
Slunyaev
,
E.
Pelinovsky
, and
C. G.
Soares
, “
Reconstruction of extreme events through numerical simulations
,”
J. OMAE
136
,
011302
(
2014
).
40.
M.
Ablowitz
,
D.
Kaup
,
A.
Newell
, and
H.
Segur
, “
The inverse scattering transform—Fourier analysis for nonlinear problems
,”
Stud. Appl. Math.
53
,
249
315
(
1974
).
41.
K.
Trulsen
, “
Simulating the spatial evolution of a measured time series of a freak wave
,” in
Proc. Workshop Rogue Waves 2000
, edited by
G. A. M.
Olagnon
(
Ifremer
,
France
,
2001
), pp.
265
274
.
42.
A.
Mussot
,
A.
Kudlinski
,
M.
Kolobov
,
E.
Louvergneaux
,
M.
Douay
, and
M.
Taki
, “
Observation of extreme temporal events in CW-pumped supercontinuum
,”
Opt. Express
17
,
17010
17015
(
2009
).
43.
D.
Kachulin
,
A.
Dyachenko
, and
S.
Dremov
, “
Multiple soliton interactions on the surface of deep water
,”
Fluids
5
,
65
(
2020
).
44.
W.
Fujimoto
,
T.
Waseda
, and
A.
Webb
, “
Impact of the four-wave quasi-resonance on freak wave shapes in the ocean
,”
Ocean Dyn.
69
,
101
121
(
2019
).
45.
A.
Kokorina
and
A.
Slunyaev
, “
Lifetimes of rogue wave events in direct numerical simulations of deep-water irregular sea waves
,”
Fluids
4
,
70
(
2019
).
46.
K.
Henderson
,
D.
Peregrine
, and
J.
Dold
, “
Unsteady water wave modulations: Fully nonlinear solutions and comparison with the nonlinear Schrodinger equation
,”
Wave Motion
29
,
341
361
(
1999
).
47.
A.
Chabchoub
,
N.
Hoffmann
, and
N.
Akhmediev
, “
Rogue wave observation in a water wave tank
,”
Phys. Rev. Lett.
106
,
204502
(
2011
).
48.
A.
Cazaubiel
,
G.
Michel
,
S.
Lepot
,
B.
Semin
,
S.
Aumaitre
,
M.
Berhanu
,
F.
Bonnefoy
, and
E.
Falcon
, “
Coexistence of solitons and extreme events in deep water surface waves
,”
Phys. Rev. Fluids
3
,
114802
(
2018
).
49.
D.
Agafontsev
and
A.
Gelash
, “
Rogue waves with rational proles in unstable condensate and its solitonic model
,” e-print arXiv:2009.12951 (
2020
).
50.
A.
Calini
and
C.
Schober
, “
Characterizing JONSWAP rogue waves and their statistics via inverse spectral data
,”
Wave Motion
71
,
5
17
(
2017
).
51.
N.
Akhmediev
,
J. M.
Soto-Crespo
, and
N.
Devine
, “
Breather turbulence versus soliton turbulence: Rogue waves, probability density functions, and spectral features
,”
Phys. Rev. E
94
,
022212
(
2016
).
52.
B.
Kibler
,
J.
Fatome
,
C.
Finot
,
G.
Millot
,
F.
Dias
,
G.
Genty
,
N.
Akhmediev
, and
J.
Dudley
, “
The Peregrine soliton in nonlinear fibre optics
,”
Nat. Phys.
6
,
790
795
(
2010
).
53.
A.
Tikan
, “
Effect of local Peregrine soliton emergence on statistics of random waves in the one-dimensional focusing nonlinear Schrödinger equation
,”
Phys. Rev. E
101
,
012209
(
2020
).
54.
I.
Chekhovskoy
,
O.
Shtyrina
,
M.
Fedoruk
,
S.
Medvedev
, and
S.
Turitsyn
, “
Nonlinear Fourier transform for analysis of coherent structures in dissipative systems
,”
Phys. Rev. Lett.
122
,
153901
(
2019
).
55.
S.
Turitsyn
,
I.
Chekhovskoy
, and
M.
Fedoruk
, “
Nonlinear Fourier transform for characterization of the coherent structures in optical microresonators
,”
Opt. Lett
45
,
3059
3062
(
2020
).
You do not currently have access to this content.