In a recent paper, Liu et al. [“Lift and drag in three-dimensional steady viscous and compressible flow”, Phys. Fluids 29, 116105 (2017)] obtained a universal theory for the aerodynamic force on a body in three-dimensional steady flow, effective from incompressible all the way to supersonic regimes. In this theory, the total aerodynamic force can be determined solely with the vorticity distribution on a single wake plane locating in the steady linear far field. Despite the vital importance of this result, its validity and performance in practice has not been investigated yet. In this paper, we performed Reynolds-averaged Navier–Stokes simulations of subsonic, transonic, and supersonic flows over a three-dimensional wing. The aerodynamic forces obtained from the universal force theory are compared with those from the standard wall-stress integrals. The agreement between these two formulas confirms for the first time the validity of the theory in three-dimensional steady viscous and compressible flow. The good performance of the universal formula is mainly due to the fact that the turbulent viscosity in the wake is much larger than the molecular viscosity therein, which can reduce significantly the distance of the steady linear far field from the body. To further confirm the correctness of the theory, comparisons are made for the flow structures on the wake plane obtained from the analytical results and numerical simulations. The underlying physics relevant to the universality of the theory is explained by identifying different sources of vorticity in the wake.

1.
L. Q.
Liu
,
J. Z.
Wu
,
W. D.
Su
, and
L. L.
Kang
, “
Lift and drag in three-dimensional steady viscous and compressible flow
,”
Phys. Fluids
29
,
116105
(
2017
).
2.
S. F.
Zou
,
J. Z.
Wu
,
A. K.
Gao
,
L. Q.
Liu
,
L. L.
Kang
, and
Y. P.
Shi
, “
On the concept and theory of induced drag for viscous and incompressible steady flow
,”
Phys. Fluids
31
,
065106
(
2019
).
3.
J. Z.
Wu
,
H. Y.
Ma
, and
M. D.
Zhou
,
Vorticity and Vortex Dynamics
(
Springer
,
Berlin
,
2006
).
4.
J. Z.
Wu
and
J. M.
Wu
, “
Interactions between a solid-surface and a viscous compressible flow-field
,”
J. Fluid Mech.
254
,
183
211
(
1993
).
5.
W.
Kutta
, “
Lift forces in flowing fluids
,”
Illustrated Aeronaut. Commun.
3
,
133
135
(
1902
).
6.
N. E.
Joukowski
, “
On annexed vortices
,”
Proc. Phys. Sect. Nat. Sci. Soc.
13
,
12
25
(
1906
).
7.
G. K.
Batchelor
,
An Introduction to Fluid Dynamics
(
Cambridge University Press
,
Cambridge
,
1967
).
8.
L. N. G.
Filon
, “
The forces on a cylinder in a stream of viscous fluid
,”
Proc. R. Soc. Lond. A
113
7
27
(
1926
).
9.
L. Q.
Liu
,
J. Y.
Zhu
, and
J. Z.
Wu
, “
Lift and drag in two-dimensional steady viscous and compressible flow
,”
J. Fluid Mech.
784
,
304
341
(
2015
).
10.
L. Q.
Liu
,
L. L.
Kang
, and
J. Z.
Wu
, “
Zonal structure of unbounded external-flow and aerodynamics
,”
Fluid Dyn. Res.
49
,
045508
(
2017
).
11.
L. Q.
Liu
,
Unified Theoretical Foundations of Lift and Drag in Viscous and Compressible External Flows
(
Springer
,
Singapore
,
2018
).
12.
F.
Palacios
,
J.
Alonso
,
K.
Duraisamy
,
M.
Colonno
,
J.
Hicken
,
A.
Aranake
,
A.
Campos
,
S.
Copeland
,
T.
Economon
,
A.
Lonkar
,
T.
Lukaczyk
, and
T.
Taylor
, “
Stanford University Unstructured (SU2): An open-source integrated computational environment for multi-physics simulation and design
,”
AIAA Paper No. 2013-0287
,
2013
.
13.
Y.
Feng
,
S.
Guo
,
J.
Jacob
, and
P.
Sagaut
, “
Solid wall and open boundary conditions in hybrid recursive regularized lattice Boltzmann method for compressible flows
,”
Phys. Fluids
31
,
126103
(
2019
).
14.
A. A.
Mishra
,
J.
Mukhopadhaya
,
J.
Alonso
, and
G.
Iaccarino
, “
Design exploration and optimization under uncertainty
,”
Phys. Fluids
32
,
085106
(
2020
).
15.
C.
Rumsey
, “
Turbulence model numerical analysis, Grids-3-D ONERA M6 wing [online database]
” (
2018
).
16.
A.-K.
Gao
,
S.
Zou
,
Y.
Shi
, and
J.
Wu
, “
Energy-based drag breakdown in compressible flow by wake-plane integrals
,”
AIAA J.
57
,
3231
3238
(
2019
).
17.
T.
Liu
,
S.
Woodiga
, and
T.
Ma
, “
Skin friction topology in a region enclosed by penetrable boundary
,”
Exp. Fluids
51
,
1549
1562
(
2011
).
18.
L. L.
Kang
,
L.
Russo
,
R.
Tognaccini
,
J. Z.
Wu
, and
W. D.
Su
, “
Aerodynamic force breakdown in reversible and irreversible components by vortex force theory
,”
AIAA J.
57
,
4623
4638
(
2019
).
19.
C.
Truesdell
, “
On curved shocks in steady plane flow of an ideal fluid
,”
J. Aeronaut. Sci.
19
,
826
828
(
1952
).
20.
M. J.
Lighthill
, “
Dynamics of a dissociating gas Part I Equilibrium flow
,”
J. Fluid Mech.
2
,
1
32
(
1957
).
21.
W. D.
Hayes
, “
The vorticity jump across a gasdynamic discontinuity
,”
J. Fluid Mech.
2
,
595
600
(
1957
).
22.
N. K. R.
Kevlahan
, “
The propagation of weak shocks in non-uniform flows
,”
J. Fluid Mech.
327
,
161
197
(
1996
).
23.
N. K. R.
Kevlahan
, “
The vorticity jump across a shock in a non-uniform flow
,”
J. Fluid Mech.
341
,
371
384
(
1997
).
You do not currently have access to this content.