Multi-species modeling is implemented for the particle-based ellipsoidal statistical Bhatnagar–Gross–Krook method for monatomic species in the open-source plasma simulation suite PICLas. After a literature review on available multi-species extensions of the kinetic model equations and approaches for the determination of the transport coefficients, Brull's model is implemented for the former and Wilke's mixing rules and collision integrals for the latter. The implementation is verified with two simulation test cases: a supersonic Couette flow and the hypersonic flow around a 70° blunted cone. The simulation results are compared with the Direct Simulation Monte Carlo (DSMC) method, where good overall agreement can be achieved. However, the determination of the transport coefficients through collision integrals offers better agreement with the DSMC results at acceptable computational cost. For the last test case, a comparison of the computational efficiency is presented.

1.
G. A.
Bird
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
, 2nd ed. (
Oxford University Press
,
New York
,
1994
).
2.
J.
Zhang
,
B.
John
,
M.
Pfeiffer
,
F.
Fei
, and
D.
Wen
, “
Particle-based hybrid and multiscale methods for nonequilibrium gas flows
,”
Adv. Aerodyn.
1
,
12
(
2019
).
3.
M.
Pfeiffer
,
A.
Mirza
, and
P.
Nizenkov
, “
Evaluation of particle-based continuum methods for a coupling with the direct simulation Monte Carlo method based on a nozzle expansion
,”
Phys. Fluids
31
,
073601
(
2019
).
4.
P. L.
Bhatnagar
,
E. P.
Gross
, and
M.
Krook
, “
A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems
,”
Phys. Rev.
94
,
511
(
1954
).
5.
L. H.
Holway
, “
New statistical models for kinetic theory: Methods of construction
,”
Phys. Fluids
9
,
1658
1673
(
1966
).
6.
E. M.
Shakhov
, “
Generalization of the Krook kinetic relaxation equation
,”
Fluid Dyn.
3
,
95
96
(
1972
).
7.
See https://github.com/piclas-framework/piclas for PICLas is a flexible particle-based plasma simulation suite.
8.
M.
Pfeiffer
, “
Particle-based fluid dynamics: Comparison of different Bhatnagar-Gross-Krook models and the direct simulation Monte Carlo method for hypersonic flows
,”
Phys. Fluids
30
,
106106
(
2018
).
9.
M.
Pfeiffer
, “
Extending the particle ellipsoidal statistical Bhatnagar-Gross-Krook method to diatomic molecules including quantized vibrational energies
,”
Phys. Fluids
30
,
116103
(
2018
).
10.
M.
Pfeiffer
,
P.
Nizenkov
, and
S.
Fasoulas
, “
Extension of particle-based BGK models to polyatomic species in hypersonic flow around a flat-faced cylinder
,”
AIP Conf. Proc.
2132
,
100001
(
2019
).
11.
P.
Andries
,
K.
Aoki
, and
B.
Perthame
, “
A consistent BGK-type model for gas mixtures
,”
J. Stat. Phys.
106
,
993
1018
(
2002
).
12.
C.
Klingenberg
and
M.
Pirner
, “
Existence, uniqueness and positivity of solutions for BGK models for mixtures
,”
J. Differential Equations
264
,
702
727
(
2018
).
13.
C.
Klingenberg
,
M.
Pirner
, and, and
G.
Puppo
, “
Kinetic ES-BGK models for a multi-component gas mixture
,” in
Theory, Numerics and Applications of Hyperbolic Problems II
, edited by
C.
Klingenberg
and
M.
Westdickenberg
(
Springer International Publishing
,
2018
), pp.
195
208
.
14.
M.
Groppi
,
S.
Monica
, and
G.
Spiga
, “
A kinetic ellipsoidal BGK model for a binary gas mixture
,”
Europhys. Lett.
96
,
64002
(
2011
).
15.
S.
Brull
, “
An ellipsoidal statistical model for gas mixtures
,”
Commun. Math. Sci.
13
,
1
13
(
2015
).
16.
B. N.
Todorova
and
R.
Steijl
, “
Derivation and numerical comparison of Shakhov and Ellipsoidal Statistical kinetic models for a monoatomic gas mixture
,”
Eur. J. Mech., B
76
,
390
402
(
2019
).
17.
C. R.
Wilke
, “
A viscosity equation for gas mixtures
,”
J. Chem. Phys.
18,
18
,
517
519
(
1950
).
18.
G. E.
Palmer
and
M. J.
Wright
, “
Comparison of methods to compute high-temperature gas viscosity introduction
,”
J. Thermophys. Heat Transfer
17
,
232
(
2003
).
19.
J. O.
Hirschfelder
,
C. F.
Curtiss
, and
R. B.
Bird
,
The Molecular Theory of Gases and Liquids
, revised ed. (
Wiley-Interscience
,
1964
), p.
1280
.
20.
J.
Kestin
,
K.
Knierim
,
E. A.
Mason
,
B.
Najafi
,
S. T.
Ro
, and
M.
Waldman
, “
Equilibrium and transport properties of the noble gases and their mixtures at low density
,”
J. Phys. Chem. Ref. Data
13
(
1
),
229
303
(
1984
).
21.
M.
Capitelli
,
C.
Gorse
,
S.
Longo
, and
D.
Giordano
, “
Collision integrals of high-temperature air species
,”
J. Thermophys. Heat Transfer
14
,
259
268
(
2000
).
22.
M. J.
Wright
,
D.
Bose
,
G. E.
Palmer
, and
E.
Levin
, “
Recommended collision integrals for transport property computations Part 1: Air species
,”
AIAA J.
43
,
2558
2564
(
2005
).
23.
M. J.
Wright
,
H. H.
Hwang
, and
D. W.
Schwenke
, “
Recommended collision integrals for transport property computations part 2: Mars and venus entries
,”
AIAA J.
45
,
281
288
(
2007
).
24.
K. A.
Stephani
,
D. B.
Goldstein
, and
P. L.
Varghese
, “
Consistent treatment of transport properties for five-species air direct simulation Monte Carlo/Navier-Stokes applications
,”
Phys. Fluids
24
,
077101
(
2012
).
25.
A.
Venkattraman
and
A. A.
Alexeenko
, “
Binary scattering model for Lennard-Jones potential: Transport coefficients and collision integrals for non-equilibrium gas flow simulations
,”
Phys. Fluids
24
,
027101
(
2012
).
26.
J.
Mathiaud
and
L.
Mieussens
, “
A Fokker–Planck model of the Boltzmann equation with correct Prandtl number
,”
J. Stat. Phys.
162
,
397
414
(
2016
).
27.
J.
Burt
and
I.
Boyd
, “
Evaluation of a particle method for the ellipsoidal statistical Bhatnagar-Gross-Krook equation
,” in
44th AIAA Aerospace Sciences Meeting and Exhibit
(
2006
), p.
989
.
28.
C.-D.
Munz
,
M.
Auweter-Kurtz
,
S.
Fasoulas
,
A.
Mirza
,
P.
Ortwein
,
M.
Pfeiffer
, and
T.
Stindl
, “
Coupled particle-in-cell and direct simulation Monte Carlo method for simulating reactive plasma flows
,”
C. R. Méc.
342
,
662
670
(
2014
).
29.
S.
Fasoulas
,
C.-D.
Munz
,
M.
Pfeiffer
,
J.
Beyer
,
T.
Binder
,
S.
Copplestone
,
A.
Mirza
,
P.
Nizenkov
,
P.
Ortwein
, and
W.
Reschke
, “
Combining particle-in-cell and direct simulation monte carlo for the simulation of reactive plasma flows
,”
Phys. Fluids
31
,
072006
(
2019
).
30.
M.
Gallis
and
J.
Torczynski
, “
Investigation of the ellipsoidal-statistical Bhatnagar-Gross-Krook kinetic model applied to gas-phase transport of heat and tangential momentum between parallel walls
,”
Phys. Fluids
23
,
030601
(
2011
).
31.
M.
Gallis
and
J.
Torczynski
, “
The application of the BGK model in particle simulations
,” in
34th Thermophysics Conference
(
2000
) p.
2360
.
32.
M. S.
Ivanov
,
A. V.
Kashkovsky
,
S. F.
Gimelshein
,
G. N.
Markelov
,
A. A.
Alexeenko
,
Y. A.
Bondar
,
G. A.
Zhukova
,
S. B.
Nikiforov
, and, and
P. V.
Vashchenkov
, “
SMILE System for 2D/3D DSMC Computations
,” in
25th International Symposium on Rarefied Gas Dynamics
(
AIP
,
St. Petersburg, Russia
,
2006
).
33.
F.
Fei
,
H.
Liu
,
Z.
Liu
, and
J.
Zhang
, “
A benchmark study of kinetic models for shock waves
,”
AIAA J.
58
,
2596
2513
(
2020
).
34.
Y.
Zheng
and
H.
Struchtrup
, “
Ellipsoidal statistical Bhatnagar–Gross–Krook model with velocity-dependent collision frequency
,”
Phys. Fluids
17
,
127103
(
2005
).
You do not currently have access to this content.