A computational study based on well-resolved large-eddy simulations is performed to study the skin friction modification by a large-eddy breakup device (LEBU) in a zero-pressure-gradient turbulent boundary layer. The LEBU was modeled using an immersed boundary method. It is observed that the presence of the device leads to the generation of wake vortices, which propagate downstream from the LEBU and toward the wall. A skin friction decomposition procedure is utilized to study different physical mechanisms of the observed skin friction reduction. From the skin friction decomposition, it is found that the skin friction reduction can be characterized by three universal regions of different changes for the skin friction contributions. The first region is predominantly associated with the formation of the wake vortices and the reduction of Reynolds shear stress. In the second region, the mean streamwise velocity fields show that a region of velocity deficit formed downstream of the LEBU propagates toward the wall and leads to turbulence reduction due to wake wall interactions, which also induces a local maximum skin friction reduction. In the third region, the dissipation of wake vortices leads to the regeneration of Reynolds shear stress. A quadrant analysis of the Reynolds shear stress contribution reveals that the LEBU increases the Q2 and Q4 contributions and attenuates the Q1 and Q3 contributions in the first region, followed by an onset of Reynolds shear stress further downstream.

1.
P. R.
Bandyopadhyay
, “
Review—Mean flow in turbulent boundary layers disturbed to alter skin friction
,”
J. Fluids Eng.
108
,
127
140
(
1986
).
2.
M.
Gad-el Hak
,
Flow Control: Passive, Active, and Reactive Flow Management
(
Cambridge University Press
,
2000
).
3.
J.
Park
and
H.
Choi
, “
Effects of uniform blowing or suction from a spanwise slot on a turbulent boundary layer flow
,”
Phys. Fluids
11
,
3095
3105
(
1999
).
4.
Y.
Kametani
and
K.
Fukagata
, “
Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction
,”
J. Fluid Mech.
681
,
154
172
(
2011
).
5.
W. J.
Jung
,
N.
Mangiavacchi
, and
R.
Akhavan
, “
Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations
,”
Phys. Fluids
4
,
1605
1607
(
1992
).
6.
M.
Quadrio
and
P.
Ricco
, “
Critical assessment of turbulent drag reduction through spanwise wall oscillations
,”
J. Fluid Mech.
521
,
251
271
(
2004
).
7.
H.
Choi
,
P.
Moin
, and
J.
Kim
, “
Active turbulence control for drag reduction in wall bounded flows
,”
J. Fluid Mech.
262
,
75
110
(
1994
).
8.
J.
Kim
, “
Control of turbulent boundary layers
,”
Phys. Fluids
15
,
1093
1105
(
2003
).
9.
M. B.
Martell
,
J. B.
Perot
, and
J. P.
Rothstein
, “
Direct numerical simulations of turbulent flows over superhydrophobic surfaces
,”
J. Fluid Mech.
620
,
31
41
(
2009
).
10.
S.
Türk
,
G.
Daschiel
,
A.
Stroh
,
Y.
Hasegawa
, and
B.
Frohnapfel
, “
Turbulent flow over superhydrophobic surfaces with streamwise grooves
,”
J. Fluid Mech.
747
,
186
217
(
2014
).
11.
T. O.
Jelly
,
S. Y.
Jung
, and
T. A.
Zaki
, “
Turbulence and skin friction modification in channel flow with streamwise-aligned superhydrophobic surface texture
,”
Phys. Fluids
26
,
095102
(
2014
).
12.
P. W.
Carpenter
and
P. J.
Morris
, “
The effect of anisotropic wall compliance on boundary-layer stability and transition
,”
J. Fluid Mech.
218
,
171
223
(
1990
).
13.
T.
Endo
and
R.
Himeno
, “
Direct numerical simulation of turbulent flow over a compliant surface
,”
J. Turbul.
3
,
7
(
2002
).
14.
K.
Fukagata
,
S.
Kern
,
P.
Chatelain
,
P.
Koumoutsakos
, and
N.
Kasagi
, “
Evolutionary optimization of an anisotropic compliant surface for turbulent friction drag reduction
,”
J. Turbul.
9
,
N35
(
2008
).
15.
B.
Yu
,
F.
Li
, and
Y.
Kawaguchi
, “
Numerical and experimental investigation of turbulent characteristics in a drag-reducing flow with surfactant additives
,”
Int. J. Heat Fluid Flow
25
,
961
974
(
2004
).
16.
C. M.
White
and
M. G.
Mungal
, “
Mechanics and prediction of turbulent drag reduction with polymer additives
,”
Annu. Rev. Fluid Mech.
40
,
235
256
(
2008
).
17.
H.
Choi
,
P.
Moin
, and
J.
Kim
, “
Direct numerical simulation of turbulent flow over riblets
,”
J. Fluid Mech.
255
,
503
539
(
1993
).
18.
J.
Jiménez
, “
Turbulent flows over rough walls
,”
Annu. Rev. Fluid Mech.
36
,
173
196
(
2004
).
19.
P.
Spalart
,
M.
Strelets
, and
A.
Travin
, “
Direct numerical simulation of large-eddy-break-up devices in a boundary layer
,”
Int. J. Heat Fluid Flow
27
,
902
910
(
2006
).
20.
C.
Chin
,
R.
Örlü
,
J.
Monty
,
N.
Hutchins
,
A.
Ooi
, and
P.
Schlatter
, “
Simulation of a large-eddy-break-up device (LEBU) in a moderate Reynolds number turbulent boundary layer
,”
Flow Turbul. Combust.
98
,
445
460
(
2017
).
21.
J.-S.
Kim
,
J.
Hwang
,
M.
Yoon
,
J.
Ahn
, and
H. J.
Sung
, “
Influence of a large-eddy breakup device on the frictional drag in a turbulent boundary layer
,”
Phys. Fluids
29
,
065103
(
2017
).
22.
T. C.
Corke
and
F. O.
Thomas
, “
Active and passive turbulent boundary-layer drag reduction
,”
AIAA J.
56
,
3835
3847
(
2018
).
23.
J.
Canton
,
R.
Örlü
,
C.
Chin
, and
P.
Schlatter
, “
Reynolds number dependence of large-scale friction control in turbulent channel flow
,”
Phys. Rev. Fluids
1
,
081501
(
2016
).
24.
J.
Yao
,
X.
Chen
,
F.
Thomas
, and
F.
Hussain
, “
Large-scale control strategy for drag reduction in turbulent channel flows
,”
Phys. Rev. Fluids
2
,
062601
(
2017
).
25.
W.
Yuan
,
M.
Zhang
,
Y.
Cui
, and
B. C.
Khoo
, “
Phase-space dynamics of near-wall streaks in wall-bounded turbulence with spanwise oscillation
,”
Phys. Fluids
31
,
125113
(
2019
).
26.
D.
Roggenkamp
,
W.
Li
,
M.
Klaas
, and
W.
Schröder
, “
Influence of spanwise transversal surface wave on coherent structures in turbulent boundary layers
,”
Aerosp. Sci. Technol.
86
,
387
400
(
2019
).
27.
W.
Li
,
D.
Roggenkamp
,
V.
Paakkari
,
M.
Klaas
,
J.
Soria
, and
W.
Schröder
, “
Analysis of a drag reduced flat plate turbulent boundary layer via uniform momentum zones
,”
Aerosp. Sci. Technol.
96
,
105552
(
2020
).
28.
J. M.
Hamilton
,
J.
Kim
, and
F.
Waleffe
, “
Regeneration mechanisms of near-wall turbulence structures
,”
J. Fluid Mech.
287
,
317
348
(
1995
).
29.
W.
Schoppa
and
F.
Hussain
, “
A large-scale control strategy for drag reduction in turbulent boundary layers
,”
Phys. Fluids
10
,
1049
1051
(
1998
).
30.
M.
Abbassi
,
W.
Baars
,
N.
Hutchins
, and
I.
Marusic
, “
Skin-friction drag reduction in a high-Reynolds-number turbulent boundary layer via real-time control of large-scale structures
,”
Int. J. Heat Fluid Flow
67
,
30
41
(
2017
).
31.
A.
Sahlin
,
A. V.
Johansson
, and
P. H.
Alfredsson
, “
The possibility of drag reduction by outer layer manipulators in turbulent boundary layers
,”
Phys. Fluids
31
,
2814
2820
(
1988
).
32.
J. B.
Anders
, “
Boundary layer manipulators at high Reynolds numbers
,” in
Structure of Turbulence and Drag Reduction
, edited by
A.
Gyr
(
Springer Berlin Heidelberg
,
Berlin
,
1990
) pp.
475
482
.
33.
T. B.
Lynn
,
D. W.
Bechert
, and
D. A.
Gerich
, “
Direct drag measurements in a turbulent flat-plate boundary layer with turbulence manipulators
,”
Exp. Fluids
19
,
405
416
(
1995
).
34.
K. S.
Yajnik
and
M.
Acharya
, “
Non-equilibrium effects in a turbulent boundary layer due to the destruction of large eddies
,” in
Structure and Mechanisms of Turbulence I
, Lecture Notes in Physics, edited by
H.
Fiedler
(
Berlin Springer Verlag
,
1978
), Vol.
75
, pp.
249
260
.
35.
J. N.
Hefner
,
I. M.
Weinstein
, and
D. M.
Bushnell
, “
Large-eddy breakup scheme for turbulent viscous drag reduction
,”
Viscous Flow Drag Reduction
, Progress in Astronautics and Aeroautics Vol.
72
(
American Institute of Aeronautics and Astronautics
,
1980
),
110
127
.
36.
T. C.
Corke
,
Y.
Guezennic
, and
H. M.
Nagib
, “
Modification in drag of turbulent boundary layers resulting from manipulation of large-scale structures
,”
Viscous Flow Drag Reduction
, Progress in Astronautics and Aeroautics Vol.
72
(American Institute of Aeronautics and Astronautics,
1980
),
128
143
.
37.
T. C.
Corke
,
H. M.
Nagib
, and
Y.
Guezennec
, “
A new view on origin, role and manipulation of large scales in turbulent boundary layers
,”
NASA CR Report No. 165861
(
1982
).
38.
J. N.
Hefner
,
J. B.
Anders
, and
D. M.
Bushnell
, “
Alteration of outer flow structures for turbulent drag reduction
,” in
21st Aerospace Sciences Meeting
(
1983
).
39.
J. B.
Anders
,
J. N.
Hefner
, and
D. M.
Bushnell
, “
Performance of large-eddy breakup devices at post-transitional reynolds numbers
,” in
22nd Aerospace Sciences Meeting
(
1984
).
40.
A. M.
Savill
and
J. C.
Mumford
, “
Manipulation of turbulent boundary layers by outer-layer devices: Skin-friction and flow-visualization results
,”
J. Fluid Mech.
191
,
389
418
(
1988
).
41.
P. H.
Alfredsson
and
R.
Örlü
, “
Large-eddy breakup devices—A 40 years perspective from a stockholm horizon
,”
Flow Turbul. Combust.
100
,
877
888
(
2018
).
42.
K.
Fukagata
,
K.
Iwamoto
, and
N.
Kasagi
, “
Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows
,”
Phys. Fluids
14
,
L73
L76
(
2002
).
43.
C. S.
Peskin
, “
The immersed boundary method
,”
Acta Numer.
11
,
479
517
(
2002
).
44.
C.
Chin
,
R.
Örlü
,
P.
Schlatter
,
J.
Monty
, and
N.
Hutchins
, “
Influence of a large-eddy-breakup-device on the turbulent interface of boundary layers
,”
Flow Turbul. Combust.
99
,
823
835
(
2017
).
45.
K.
Fukagata
and
N.
Kasagi
, “
Suboptimal control for drag reduction via suppression of near-wall Reynolds shear stress
,”
Int. J. Heat Fluid Flow
25
,
341
350
(
2004
).
46.
A.
Stroh
,
B.
Frohnapfel
,
P.
Schlatter
, and
Y.
Hasegawa
, “
A comparison of opposition control in turbulent boundary layer and turbulent channel flow
,”
Phys. Fluids
27
,
075101
(
2015
).
47.
Y. X.
Hou
,
V. S. R.
Somandepalli
, and
M. G.
Mungal
, “
Streamwise development of turbulent boundary-layer drag reduction with polymer injection
,”
J. Fluid Mech.
597
,
31
66
(
2008
).
48.
Y. X.
Hou
,
V. S. R.
Somandepalli
, and
M. G.
Mungal
, “
A technique to determine total shear stress and polymer stress profiles in drag reduced boundary layer flows
,”
Exp. Fluids
40
,
589
600
(
2006
).
49.
W.
Zhang
,
H.-N.
Zhang
,
J.
Li
,
B.
Yu
, and
F.
Li
, “
Comparison of turbulent drag reduction mechanisms of viscoelastic fluids based on the Fukagata-Iwamoto-Kasagi identity and the Renard-Deck identity
,”
Phys. Fluids
32
,
013104
(
2020
).
50.
M.
Chevalier
,
P.
Schlatter
,
A.
Lundbladh
, and
D. S.
Henningson
, “
SIMSON—A pseudo-spectral solver for incompressible boundary layer flow
,”
Report No. TRITA-MEK 2007:07
(KTH Mechanics, Stockholm, Sweden,
2007
).
51.
Q.
Li
,
P.
Schlatter
, and
D. S.
Henningson
, “
Spectral simulations of wall-bounded flows on massively parallel computers
,” Tech report (KTH Mechanics, Stockholm, Sweden,
2008
).
52.
P.
Schlatter
,
S.
Stolz
, and
L.
Kleiser
, “
LES of transitional flows using the approximate deconvolution model
,”
Int. J. Heat Fluid Flow
25
,
549
558
(
2004
).
53.
P.
Schlatter
and
R.
Örlü
, “
Turbulent boundary layers at moderate Reynolds numbers: Inflow length and tripping effects
,”
J. Fluid Mech.
710
,
5
34
(
2012
).
54.
P.
Schlatter
,
R.
Örlü
,
Q.
Li
,
G.
Brethouwer
,
J. H. M.
Fransson
,
A. V.
Johansson
,
P. H.
Alfredsson
, and
D. S.
Henningson
, “
Turbulent boundary layers up to Reθ2500 studied through simulation and experiment
,”
Phys. Fluids
21
,
051702
(
2009
).
55.
G.
Eitel-Amor
,
R.
Örlü
, and
P.
Schlatter
, “
Simulation and validation of a spatially evolving turbulent boundary layer up to
Reθ=8300,”
Int. J. Heat Fluid Flow
47
,
57
69
(
2014
).
56.
S.
Deck
,
N.
Renard
,
R.
Laraufie
, and
P.-É.
Weiss
, “
Large-scale contribution to mean wall shear stress in high-Reynolds-number flat-plate boundary layers up to Reθ= 13650
,”
J. Fluid Mech.
743
,
202
248
(
2014
).
57.
J. M.
Wallace
,
H.
Eckelmann
, and
R. S.
Brodkey
, “
The wall region in turbulent shear flow
,”
J. Fluid Mech.
54
,
39
48
(
1972
).

Supplementary Material

You do not currently have access to this content.