Spectral proper orthogonal decomposition (SPOD) is applied to experimental digital visualizations to scrutinize the properties of the wake flow behind curved cylinders. This technique has been applied to the image data of Shang et al. [“Flow past finite cylinders of constant curvature,” J. Fluid Mech. 837, 896–915 (2018)] to emphasize the main features of the flow and to extract the most energetically and dynamically relevant space-time coherent structures. The study considers different Reynolds numbers and angles of curvature for two cylinder aspect ratios. It is first shown that the SPOD structures reproduce the base flow topology of the digital visualizations, confirming the presence of a single oblique shedding regime for a low aspect ratio and both normal and oblique regimes for a high aspect ratio. The appearance of the instabilities typical of straight cylinders, usually referred to as type-A and -B in literature, is identified as well. As principal results obtained for curved cylinders, increasing the Reynolds number the analysis of SPOD spectra has revealed two reductions in the oscillation frequency of the leading coherent structures, attributed to the occurrence of type-A instability when the wake is still laminar, and to the development of a one-sided vortex dislocation in turbulent regime. The study has also highlighted the gradual transfer of energy between flow structures during the transition from type-A to type-B instabilities, accompanied by high-frequency scales excitement. Some peculiar aspects of SPOD field reconstruction are outlined here, which are suggested by the physical characteristics of the flow.

1.
C. H. K.
Williamson
, “
Vortex dynamics in the cylinder wake
,”
Annu. Rev. Fluid Mech.
28
,
477
539
(
1996
).
2.
A.
Roshko
,
On the Development of Turbulent Wakes from Vortex Streets
(
National Advisory Committee for Aeronautics
,
1954
).
3.
S. E.
Ramberg
, “
The effects of yaw and finite length upon the vortex wakes of stationary and vibrating circular cylinders
,”
J. Fluid Mech.
128
,
81
107
(
1983
).
4.
M.
Hammache
and
M.
Gharib
, “
An experimental study of the parallel and oblique vortex shedding from circular cylinders
,”
J. Fluid Mech.
232
,
567
590
(
1991
).
5.
A.
Desai
,
S.
Mittal
, and
S.
Mittal
, “
Experimental investigation of vortex shedding past a circular cylinder in the high subcritical regime
,”
Phys. Fluids
32
,
014105
(
2020
).
6.
M.
Islam
and
A.
Mohany
, “
Vortex shedding characteristics in the wake of circular finned cylinders
,”
Phys. Fluids
32
,
045113
(
2020
).
7.
S.
Chu
,
C.
Xia
,
H.
Wang
,
Y.
Fan
, and
Z.
Yang
, “
Three-dimensional spectral proper orthogonal decomposition analyses of the turbulent flow around a seal-vibrissa-shaped cylinder
,”
Phys. Fluids
33
,
025106
(
2021
).
8.
J. K.
Shang
,
H. A.
Stone
, and
A. J.
Smits
, “
Flow past finite cylinders of constant curvature
,”
J. Fluid Mech.
837
,
896
915
(
2018
).
9.
A.
Miliou
,
A.
De Vecchi
,
S. J.
Sherwin
, and
J. M. R.
Graham
, “
Wake dynamics of external flow past a curved circular cylinder with the free stream aligned with the plane of curvature
,”
J. Fluid Mech.
592
,
89
115
(
2007
).
10.
A.
de Vecchi
,
S. J.
Sherwin
, and
J. M. R.
Graham
, “
Wake dynamics of external flow past a curved circular cylinder with the free-stream aligned to the plane of curvature
,”
J. Fluids Struct.
24
,
1262
1270
(
2008
).
11.
J. P.
Gallardo
,
H. I.
Andersson
, and
B.
Pettersen
, “
Turbulent wake behind a curved circular cylinder
,”
J. Fluid Mech.
742
,
192
229
(
2014
).
12.
F.
Jiang
,
B.
Pettersen
,
H. I.
Andersson
,
J.
Kim
, and
S.
Kim
, “
Wake behind a concave curved cylinder
,”
Phys. Rev. Fluids
3
,
094804
(
2018
).
13.
F.
Jiang
,
B.
Pettersen
, and
H. I.
Andersson
, “
Turbulent wake behind a concave curved cylinder
,”
J. Fluid Mech.
878
,
663
699
(
2019
).
14.
C. H. K.
Williamson
, “
Three-dimensional wake transition
,”
J. Fluid Mech.
328
,
345
407
(
1996
).
15.
O. T.
Schmidt
and
T.
Colonius
, “
Guide to spectral proper orthogonal decomposition
,”
AIAA J.
58
,
1023
1033
(
2020
).
16.
C. W.
Rowley
and
S. T. M.
Dawson
, “
Model reduction for flow analysis and control
,”
Annu. Rev. Fluid Mech.
49
,
387
417
(
2017
).
17.
K.
Taira
,
S. L.
Brunton
,
S. T. M.
Dawson
,
C. W.
Rowley
,
T.
Colonius
,
B. J.
McKeon
,
O. T.
Schmidt
,
S.
Gordeyev
,
V.
Theofilis
, and
L. S.
Ukeiley
, “
Modal analysis of fluid flows: An overview
,”
AIAA J.
55
,
4013
4041
(
2017
).
18.
A.
Towne
,
O. T.
Schmidt
, and
T.
Colonius
, “
Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis
,”
J. Fluid Mech.
847
,
821
867
(
2018
).
19.
G.
Berkooz
,
P.
Holmes
, and
J. L.
Lumley
, “
The proper orthogonal decomposition in the analysis of turbulent flows
,”
Annu. Rev. Fluid Mech.
25
,
539
575
(
1993
).
20.
P. J.
Schmid
, “
Dynamic mode decomposition of numerical and experimental data
,”
J. Fluid Mech.
656
,
5
28
(
2010
).
21.
A.
Smits
and
T.
Lim
,
Flow Visualization: Techniques and Examples
(
Imperial College Press
,
2000
).
22.
J. G.
Proakis
and
D. G.
Manolakis
,
Digital Signal Processing
, 4th ed. (
Prentice Hall
,
Upper Saddle River, New Jersey
,
2006
).
23.
J. N.
Kutz
,
S. L.
Brunton
,
B. W.
Brunton
, and
J. L.
Proctor
,
Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems
(
SIAM-Society for Industrial and Applied Mathematics
,
2016
).
24.
C. H. K.
Williamson
, “
Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers
,”
J. Fluid Mech.
206
,
579
627
(
1989
).
You do not currently have access to this content.