The design challenge of reliable lean combustors needed to decrease pollutant emissions has clearly progressed with the common use of experiments as well as large eddy simulation (LES) because of its ability to predict the interactions between turbulent flows, sprays, acoustics, and flames. However, the accuracy of such numerical predictions depends very often on the user's experience to choose the most appropriate flow modeling and, more importantly, the proper spatial discretization for a given computational domain. The present work focuses on the last issue and proposes a static mesh refinement strategy based on flow physical quantities. To do so, a combination of sensors based on the dissipation and production of kinetic energy coupled to the flame-position probability is proposed to detect the regions of interest where flow physics happens and grid adaptation is recommended for good LES predictions. Thanks to such measures, a local mesh resolution can be achieved in these zones improving the LES overall accuracy while, eventually, coarsening everywhere else in the domain to reduce the computational cost. The proposed mesh refinement strategy is detailed and validated on two reacting-flow problems: a fully premixed bluff-body stabilized flame, i.e., the VOLVO test case, and a partially premixed swirled flame, i.e., the PRECCINSTA burner, which is closer to industrial configurations. For both cases, comparisons of the results with experimental data underline the fact that the predictions of the flame stabilization, and hence the computed velocity and temperature fields, are strongly influenced by the mesh quality and significant improvement can be obtained by applying the proposed strategy.

1.
U.
Piomelli
, “
Large-eddy simulation: Achievements and challenges
,”
Prog. Aerosp. Sci.
35
,
335
362
(
1999
).
2.
C.
Yu
,
Z.
Xiao
, and
X.
Li
, “
Scale-adaptive subgrid-scale modelling for large-eddy simulation of turbulent flows
,”
Phys. Fluids
29
,
035101
(
2017
).
3.
M. H.
Silvis
,
R. A.
Remmerswaal
, and
R.
Verstappen
, “
Physical consistency of subgrid-scale models for large-eddy simulation of incompressible turbulent flows
,”
Phys. Fluids
29
,
015105
(
2017
).
4.
S.
Roux
,
G.
Lartigue
,
T.
Poinsot
,
U.
Meier
, and
C.
Bérat
, “
Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis, and large eddy simulations
,”
Combust. Flame
141
,
40
54
(
2005
).
5.
V.
Moureau
,
P.
Domingo
, and
L.
Vervisch
, “
From large-eddy simulation to direct numerical simulation of a lean premixed swirl flame: Filtered laminar flame-PDF modeling
,”
Combust. Flame
158
,
1340
1357
(
2011
).
6.
Y.
Huang
,
H.-G.
Sung
,
S.-Y.
Hsieh
, and
V.
Yang
, “
Large-eddy simulation of combustion dynamics of lean-premixed swirl-stabilized combustor
,”
J. Propul. Power
19
,
782
794
(
2003
).
7.
P. W.
Agostinelli
,
Y. H.
Kwah
,
S.
Richard
,
G.
Exilard
,
J. R.
Dawson
,
L.
Gicquel
, and
T.
Poinsot
, “
Numerical and experimental flame stabilization analysis in the new spinning combustion technology framework
,” in
ASME Turbo Expo
(
2020
).
8.
L. Y.
Gicquel
,
G.
Staffelbach
, and
T.
Poinsot
, “
Large eddy simulations of gaseous flames in gas turbine combustion chambers
,”
Prog. Energy Combust.
38
,
782
817
(
2012
).
9.
P.
Wolf
,
R.
Balakrishnan
,
G.
Staffelbach
,
L. Y.
Gicquel
, and
T.
Poinsot
, “
Using les to study reacting flows and instabilities in annular combustion chambers
,”
Flow, Turbul. Combust.
88
,
191
206
(
2012
).
10.
P.
Wolf
,
G.
Staffelbach
,
A.
Roux
,
L.
Gicquel
,
T.
Poinsot
, and
V.
Moureau
, “
Massively parallel les of azimuthal thermo-acoustic instabilities in annular gas turbines
,”
C. R. Mec.
337
,
385
394
(
2009
).
11.
E. L.
Schiavo
,
D.
Laera
,
E.
Riber
,
L.
Gicquel
, and
T.
Poinsot
, “
Effects of liquid fuel/wall interaction on thermoacoustic instabilities in swirling spray flames
,”
Combust. Flame
219
,
86
101
(
2020
).
12.
Y.
Sommerer
,
D.
Galley
,
T.
Poinsot
,
S.
Ducruix
,
F.
Lacas
, and
D.
Veynante
, “
Large eddy simulation and experimental study of flashback and blow-off in a lean partially premixed swirled burner
,”
J. Turbul.
5
,
1
3
(
2004
).
13.
L.
Esclapez
,
P. C.
Ma
,
E.
Mayhew
,
R.
Xu
,
S.
Stouffer
,
T.
Lee
,
H.
Wang
, and
M.
Ihme
, “
Fuel effects on lean blow-out in a realistic gas turbine combustor
,”
Combust. Flame
181
,
82
99
(
2017
).
14.
F.
Rebosio
,
A.
Widenhorn
,
B.
Noll
, and
M.
Aigner
, “
Numerical simulation of a gas turbine model combustor operated near the lean extinction limit
,” in
ASME Turbo Expo
(
American Society of Mechanical Engineers Digital Collection
,
2010
), pp.
603
612
.
15.
H.
Lu
,
W.
Chen
,
C.
Zou
, and
H.
Yao
, “
Large-eddy simulation of Sandia Flame F using structural subgrid-scale models and partially-stirred-reactor approach
,”
Phys. Fluids
31
,
045109
(
2019
).
16.
H.
Pitsch
, “
Improved pollutant predictions in large-eddy simulations of turbulent non-premixed combustion by considering scalar dissipation rate fluctuations
,”
Proc. Combust. Inst.
29
,
1971
1978
(
2002
).
17.
A.
Felden
,
L.
Esclapez
,
E.
Riber
,
B.
Cuenot
, and
H.
Wang
, “
Including real fuel chemistry in LES of turbulent spray combustion
,”
Combust. Flame
193
,
397
416
(
2018
).
18.
H.
Choi
and
P.
Moin
, “
Grid-point requirements for large eddy simulation: Chapman's estimates revisited
,”
Phys. Fluids
24
,
011702
(
2012
).
19.
S.
Rezaeiravesh
and
M.
Liefvendahl
, “
Effect of grid resolution on large eddy simulation of wall-bounded turbulence
,”
Phys. Fluids
30
,
055106
(
2018
).
20.
X. I. A.
Yang
and
K. P.
Griffin
, “
Grid-point and time-step requirements for direct numerical simulation and large-eddy simulation
,”
Phys. Fluids
33
,
015108
(
2021
).
21.
G.
Boudier
,
L.
Gicquel
, and
T.
Poinsot
, “
Effects of mesh resolution on large eddy simulation of reacting flows in complex geometry combustors
,”
Combust. Flame
155
,
196
214
(
2008
).
22.
K. M.
Almohammadi
,
D. B.
Ingham
,
L.
Ma
, and
M.
Pourkashan
, “
Computational fluid dynamics (CFD) mesh independency techniques for a straight blade vertical axis wind turbine
,”
Energy
58
,
483
493
(
2013
).
23.
P.-J.
Frey
and
F.
Alauzet
, “
Anisotropic mesh adaptation for CFD computations
,”
Comput. Methods Appl. Mech. Eng.
194
,
5068
5082
(
2005
).
24.
A.
Loseille
,
A.
Dervieux
, and
F.
Alauzet
, “
Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations
,”
J. Comput. Phys.
229
,
2866
2897
(
2010
).
25.
C.
Hertel
and
J.
Fröhlich
, “
Error reduction in les via adaptive moving grids
,” in
Quality and Reliability of Large-Eddy Simulations II
(
Springer
,
2011
), pp.
309
318
.
26.
M.
Rai
and
D.
Anderson
, “
The use of adaptive grids in conjunction with shock capturing methods
,” in
5th Computational Fluid Dynamics Conference
(
1981
), p.
1012
.
27.
M. J.
Berger
and
J.
Oliger
, “
Adaptive mesh refinement for hyperbolic partial differential equations
,”
J. Comput. Phys.
53
,
484
512
(
1984
).
28.
E.
Pomraning
,
K.
Richards
, and
P.
Senecal
, “
Modeling turbulent combustion using a rans model, detailed chemistry, and adaptive mesh refinement
,” Technical Report No. 2014-01-1116, SAE Technical Paper,
2014
.
29.
J.
Larsson
and
Q.
Wang
, “
The prospect of using large eddy and detached eddy simulations in engineering design, and the research required to get there
,”
Philos. Trans. R. Soc. A
372
,
20130329
(
2014
).
30.
O.
Antepara
,
O.
Lehmkuhl
,
R.
Borrell
,
J.
Chiva
, and
A.
Oliva
, “
Parallel adaptive mesh refinement for large-eddy simulations of turbulent flows
,”
Comput. Fluids
110
,
48
61
(
2015
).
31.
S.
Toosi
and
J.
Larsson
, “
Towards systematic grid selection in les: Identifying the optimal spatial resolution by minimizing the solution sensitivity
,”
Comput. Fluids
201
,
104488
(
2020
).
32.
R.
Payri
,
R.
Novella
,
M.
Carreres
, and
M.
Belmar-Gil
, “
Modeling gaseous non-reactive flow in a lean direct injection gas turbine combustor through an advanced mesh control strategy
,”
Proc. Inst. Mech. Eng., Part G
234
,
1788
(
2020
).
33.
S. B.
Pope
,
Turbulent Flows
(
IOP Publishing
,
2001
).
34.
P.
Benard
,
G.
Balarac
,
V.
Moureau
,
C.
Dobrzynski
,
G.
Lartigue
, and
Y.
d'Angelo
, “
Mesh adaptation for large-eddy simulations in complex geometries
,”
Int. J. Numer. Methods Fluids
81
,
719
740
(
2016
).
35.
G.
Daviller
,
M.
Brebion
,
P.
Xavier
,
G.
Staffelbach
,
J.-D.
Müller
, and
T.
Poinsot
, “
A mesh adaptation strategy to predict pressure losses in LES of swirled flows
,”
Flow, Turbul. Combust.
99
,
93
118
(
2017
).
36.
M.
Emmett
,
E.
Motheau
,
W.
Zhang
,
M.
Minion
, and
J. B.
Bell
, “
A fourth-order adaptive mesh refinement algorithm for the multicomponent, reacting compressible Navier–Stokes equations
,”
Combust. Theory Modell.
23
,
592
625
(
2019
).
37.
A.
Sjunnesson
,
C.
Nelsson
, and
E.
Max
, “
LDA Measurements of velocities and turbulence in a bluff body stabilized flame
,” in
4th International Conference on Laser Anemometry—Advances and Application
(
ASME
,
1991
), Vol.
3
, pp.
83
90
.
38.
A.
Sjunnesson
and
P.
Henrikson
, “
CARS measurements and visualization of reacting flows in a bluff body stabilized flame
,” AIAA Paper No. 92-3650,
1992
.
39.
A.
Sjunnesson
,
S.
Olovsson
, and
B.
Sjöblom
, “
Validation rig-a tool for flame studies
,” in
10th International Symposium on Air Breathing Engines
(
1991
), pp.
385
393
.
40.
P. A. T.
Cocks
,
M. C.
Soteriou
, and
V.
Sankaran
, “
Impact of numerics on the predictive capabilities of reacting flow LES
,”
Combust. Flame
162
,
3394
3411
(
2015
).
41.
B.
Rochette
,
F.
Collin-Bastiani
,
L.
Gicquel
,
O.
Vermorel
,
D.
Veynante
, and
T.
Poinsot
, “
Influence of chemical schemes, numerical method and dynamic turbulent combustion modeling on LES of premixed turbulent flames
,”
Combust. Flame
191
,
417
430
(
2018
).
42.
C.
Fureby
, “
Large eddy simulation of turbulent reacting flows with conjugate heat transfer and radiative heat transfer
,”
Proc. Combust. Inst.
(in press) (
2020
).
43.
V.
Sankaran
and
T.
Gallagher
, “
Grid convergence in les of bluff body stabilized flames
,”
AIAA Paper No. 2017-1791
,
2017
.
44.
S. A.
Drennan
,
G.
Kumar
, and, and
S.
Liu
, “
Developing grid-convergent LES simulations of augmentor combustion with automatic meshing and adaptive mesh refinement
,”
AIAA Paper No. 2017-1574
,
2017
.
45.
W.
Meier
,
P.
Weigand
,
X.
Duan
, and
R.
Giezendanner-Thoben
, “
Detailed characterization of the dynamics of thermoacoustic pulsations in a lean premixed swirl flame
,”
Combust. Flame
150
,
2
26
(
2007
).
46.
P.
Bénard
,
G.
Lartigue
,
V.
Moureau
, and
R.
Mercier
, “
Large-eddy simulation of the lean-premixed PRECCINSTA burner with wall heat loss
,”
Proc. Combust. Inst.
37
,
5233
5243
(
2019
).
47.
C.
Dapogny
,
C.
Dobrzynski
, and
P.
Frey
, “
Three-dimensional adaptive domain remeshing, implicit domain meshing, and applications to free and moving boundary problems
,”
J. Comput. Phys.
262
,
358
378
(
2014
).
48.
S. M.
Mitran
, “
A comparison of adaptive mesh refinement approaches for large eddy simulation
,” Technical Report No. ADP013657,
Washington University Seattle Department of Applied Mathematics
,
2001
.
49.
P.
Chassaing
,
R.
Antonia
,
F.
Anselmet
,
L.
Joly
, and
S.
Sarkar
,
Variable Density Fluid Turbulence
(
Springer Science and Business Media
,
2002
), Vol.
69
.
50.
F.
Kock
and
H.
Herwig
, “
Entropy production calculation for turbulent shear flows and their implementation in CFD codes
,”
Int. J. Heat Fluid Flow
26
,
672
680
(
2005
).
51.
T.
Poinsot
and
S.
Lele
, “
Boundary conditions for direct simulations of compressible viscous flows
,”
J. Comput. Phys.
101
,
104
129
(
1992
).
52.
P.
Sagaut
,
Large Eddy Simulation for Incompressible Flows: An Introduction
(
Springer Science and Business Media
,
2006
).
53.
O.
Zeman
, “
Dilatation dissipation: The concept and application in modeling compressible mixing layers
,”
Phys. Fluids A
2
,
178
188
(
1990
).
54.
H.
Pitsch
, “
Large-eddy simulation of turbulent combustion
,”
Annu. Rev. Fluid Mech.
38
,
453
482
(
2006
).
55.
T.
Butler
and
P.
O'rourke
, “
A numerical method for two dimensional unsteady reacting flows
,”
Symp. Combust. Proc.
16
,
1503
1515
(
1977
).
56.
O.
Colin
and
M.
Rudgyard
, “
Development of high-order Taylor–Galerkin schemes for LES
,”
J. Comput. Phys.
162
,
338
371
(
2000
).
57.
F.
Charlette
,
D.
Veynante
, and
C.
Meneveau
, “
A power-law wrinkling model for LES of premixed turbulent combustion: Part I - non-dynamic formulation and initial tests
,”
Combust. Flame
131
,
159
180
(
2002
).
58.
F.
Charlette
,
C.
Meneveau
, and
D.
Veynante
, “
A power-law flame wrinkling model for LES of premixed turbulent combustion Part II: Dynamic formulation
,”
Combust. Flame
131
,
181
197
(
2002
).
59.
G.
Kuenne
,
A.
Ketelheun
, and
J.
Janicka
, “
LES modeling of premixed combustion using a thickened flame approach coupled with FGM tabulated chemistry
,”
Combust. Flame
158
,
1750
1767
(
2011
).
60.
J.-P.
Légier
,
T.
Poinsot
, and
D.
Veynante
,
Dynamically Thickened Flame LES Model for Premixed and Non-Premixed Turbulent Combustion
(
Center for Turbulence Research, NASA Ames/Stanford University
,
2000
), pp.
157
168
.
61.
It is worth notice that if F can be described by a Gaussian distribution, Feff statistically does not underestimate the local maximum thickening F for the 84.15% of the time, which is considered to be a reasonable condition.
62.
A.
Ghani
,
T.
Poinsot
,
L.
Gicquel
, and
G.
Staffelbach
, “
LES of longitudinal and transverse self-excited combustion instabilities in a bluff-body stabilized turbulent premixed flame
,”
Combust. Flame
162
,
4075
4083
(
2015
).
63.
N.
Zettervall
,
K.
Nordin-Bates
,
E. J. K.
Nilsson
, and
C.
Fureby
, “
Large eddy simulation of a premixed bluff body stabilized flame using global and skeletal reaction mechanisms
,”
Combust. Flame
179
,
1
22
(
2017
).
64.
T.
Schønfeld
and
M.
Rudgyard
, “
Steady and unsteady flows simulations using the hybrid flow solver AVBP
,”
AIAA J.
37
,
1378
1385
(
1999
).
65.
P. D.
Lax
and
B.
Wendroff
, “
Difference schemes for hyperbolic equations with high order of accuracy
,”
Commun. Pure Appl. Math.
17
,
381
398
(
1964
).
66.
N.
Guezennec
and
T.
Poinsot
, “
Acoustically nonreflecting and reflecting boundary conditions for vorticity injection in compressible solvers
,”
AIAA J.
47
,
1709
1722
(
2009
).
67.
Note that for all meshes generated in this work, the minimum cell sized is kept the same as the reference mesh in order to obtained a computational cost directly proportional to the number of elements
(without modifying the time-step due to CFL condition).
68.
P.
Weigand
,
X.
Duan
,
W.
Meier
,
U.
Meier
,
M.
Aigner
, and
C.
Bérat
, “
Experimental investigations of an oscillating lean premixed CH4/air swirl flame in a gas turbine model combustor
,” in
European Combustion Meeting
(
2005
).
69.
P.
Weigand
,
W.
Meier
,
X.
Duan
, and
M.
Aigner
, “
Laser based investigations of thermo-acoustic instabilities in a lean premixed gas turbine model combustor
,” in
Turbo Expo: Power for Land, Sea, and Air
(
2006
), Vol.
42363
, pp.
237
245
.
70.
Z.
Yin
,
P.
Nau
, and
W.
Meier
, “
Responses of combustor surface temperature to flame shape transitions in a turbulent bi-stable swirl flame
,”
Exp. Therm. Fluid Sci.
82
,
50
57
(
2017
).
71.
B.
Franzelli
,
E.
Riber
,
L. Y.
Gicquel
, and
T.
Poinsot
, “
Large Eddy Simulation of combustion instabilities in a lean partially premixed swirled flame
,”
Combust. Flame
159
,
621
637
(
2012
).
72.
B.
Franzelli
,
E.
Riber
, and
B.
Cuenot
, “
Impact of the chemical description on a Large eddy simulation of a lean partially premixed swirled flame
,”
C. R. Mec.
341
,
247
256
(
2013
).
73.
D.
Fredrich
,
W. P.
Jones
, and
A. J.
Marquis
, “
The stochastic fields method applied to a partially premixed swirl flame with wall heat transfer
,”
Combust. Flame
205
,
446
456
(
2019
).
74.
J.
Galpin
,
A.
Naudin
,
L.
Vervisch
,
C.
Angelberger
,
O.
Colin
, and
P.
Domingo
, “
Large-eddy simulation of a fuel-lean premixed turbulent swirl-burner
,”
Combust. Flame
155
,
247
266
(
2008
).
75.
B.
Fiorina
,
R.
Vicquelin
,
P.
Auzillon
,
N.
Darabiha
,
O.
Gicquel
, and
D.
Veynante
, “
A filtered tabulated chemistry model for les of premixed combustion
,”
Combust. Flame
157
,
465
475
(
2010
).
76.
G.
Albouze
,
T.
Poinsot
, and
L.
Gicquel
, “
Chemical kinetics modeling and les combustion model effects on a perfectly premixed burner
,”
C. R. Mec.
337
,
318
328
(
2009
).
77.
P. S.
Volpiani
,
T.
Schmitt
, and
D.
Veynante
, “
Large eddy simulation of a turbulent swirling premixed flame coupling the TFLES model with a dynamic wrinkling formulation
,”
Combust. Flame
180
,
124
135
(
2017
).
78.
D.
Fredrich
,
W. P.
Jones
, and
A. J.
Marquis
, “
Thermo-acoustic instabilities in the PRECCINSTA combustor investigated using a compressible LES-pdf approach
,”
Flow, Turbul. Combust.
1
17
(
2020
).
79.
F.
Gao
and
E. E.
O'Brien
, “
A large-eddy simulation scheme for turbulent reacting flows
,”
Phys. Fluids A
5
,
1282
1284
(
1993
).
80.
D.
Laera
,
P. W.
Agostinelli
,
L.
Selle
,
Q.
Cazères
,
G.
Oztarlik
,
T.
Schuller
,
L.
Gicquel
, and
T.
Poinsot
, “
Stabilization mechanisms of CH4 premixed swirled flame enriched with a non-premixed hydrogen injection
,”
Proc. Combust. Inst.
(in press) (
2020
).
81.
N.
Syred
, “
A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems
,”
Prog. Energy Combust. Sci.
32
,
93
161
(
2006
).
82.
M.
Stöhr
,
K.
Oberleithner
,
M.
Sieber
,
Z.
Yin
, and
W.
Meier
, “
Experimental study of transient mechanisms of bistable flame shape transitions in a swirl combustor
,”
J. Eng. Gas Turbines Power
140
,
011503
(
2018
).
83.
K.
Oberleithner
,
M.
Stöhr
,
S. H.
Im
,
C. M.
Arndt
, and
A. M.
Steinberg
, “
Formation and flame-induced suppression of the precessing vortex core in a swirl combustor: Experiments and linear stability analysis
,”
Combust. Flame
162
,
3100
3114
(
2015
).
You do not currently have access to this content.