We revisit coarse-grained simulation strategies for turbulent material mixing applications involving shock-driven turbulence in the context of the Radiation Adaptive Grid Eulerian (xRAGE) hydrodynamics and Besnard–Harlow–Rauenzahn (BHR) Reynolds-averaged Navier–Stokes codes, using newly available Low-Mach-Corrected (LMC) xRAGE hydrodynamics. Impact assessments are based on comparisons with a relevant shock-tube experiment for which turbulent mixing and velocity data are available. xRAGE Implicit Large-Eddy Simulation (ILES) and a recently proposed xRAGE-BHR bridging paradigm are tested. Bridging models turbulent stresses dynamically, based on decomposing the full stress into modeled and resolved components, using a differential filter as a secondary filtering operation to define the resolved part, and additionally requiring the resolved stress to approach the full stress with grid resolution refinement to ensure realizability of the bridging-based large-eddy simulation. Much improved scale-resolving with LMC-xRAGE ILES and with dynamic LMC-xRAGE/BHR bridging enables higher simulated mixing and turbulence levels on coarser grids. For the tested planar shock-tube case, the more-accurate models can achieve the same level of accuracy with less resolution than required with the highest-fidelity turbulence simulation models typically used at scale with default xRAGE hydrodynamics; two-levels of grid-coarsening savings can be thus achieved for the mixing prediction in these comparisons: one associated with the more-accurate LMC xRAGE hydrodynamics and an additional one from using the dynamic xRAGE-BHR bridging.

1.
Y.
Zhou
, “
Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. I
,”
Phys. Rep.
720–722
,
1
136
(
2017
).
2.
Y.
Zhou
, “
Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. II
,”
Phys. Rep.
723–725
,
1
160
(
2017
).
3.
J. R.
Ristorcelli
,
A. A.
Gowardhan
, and
F. F.
Grinstein
, “
Two classes of Richtmyer-Meshkov instabilities; a detailed statistical look
,”
Phys. Fluids
25
,
044106
(
2013
).
4.
F. F.
Grinstein
,
Coarse Grained Simulation and Turbulent Mixing
(
Cambridge
,
2016
).
5.
Y.
Zhou
,
F. F.
Grinstein
,
A. J.
Wachtor
, and
B. M.
Haines
, “
Estimating the effective Reynolds number in implicit large-eddy simulation
,”
Phys. Rev. E
89
,
013303
(
2014
).
6.
F. F.
Grinstein
,
L. G.
Margolin
, and
W. J.
Rider
,
Implicit Large Eddy Simulation: Computing Turbulent Flow Dynamics
, 2nd printing (
Cambridge UP
,
New York
,
2010
).
7.
S.
Ghosal
, “
An analysis of numerical errors in large-eddy simulations of turbulence
,”
J. Comput. Phys.
125
,
187
206
(
1996
).
8.
J. D.
Schwarzkopf
,
D.
Livescu
,
R. A.
Gore
,
R. M.
Rauenzahn
, and
J. R.
Ristorcelli
, “
Application of a second-moment closure model to mixing processes involving multi-component miscible fluids
,”
J. Turbul.
12
(
49
),
N49
(
2011
).
9.
K.
Sinha
,
K.
Mahesh
, and
G. V.
Candler
, “
Modeling shock unsteadiness in shock/turbulence interaction
,”
Phys. Fluids
15
(
8
),
2290
2297
(
2003
).
10.
W. K.
George
and
L.
Davidson
, “
Role of initial conditions in establishing asymptotic flow behavior
,”
AIAA J.
42
,
438
446
(
2004
).
11.
J.
Frolich
and
D. A.
von Terzi
, “
Hybrid LES/RANS methods for the simulation of turbulent flows
,”
Prog. Aerosp. Sci.
44
,
349
377
(
2008
).
12.
P. R.
Spalart
, “
Detached-eddy simulation
,”
Annu. Rev. Fluid Mech.
41
,
181
202
(
2009
).
13.
C. G.
Speziale
, “
A combined large-eddy simulation and time-dependent RANS capability for high-speed compressible flows
,”
J. Sci. Comput.
13
,
253
274
(
1998
).
14.
H. F.
Fasel
,
D. A.
von Terzi
, and
R. D.
Sandberg
, “
A methodology for simulating compressible turbulent flows
,”
J. Appl. Mech.
73
,
405
412
(
2006
).
15.
C. G.
Speziale
, “
Turbulence modeling for time-dependent RANS and VLES: A review
,”
AIAA J.
36
(
2
),
173
184
(
1998
).
16.
M. Y.
Hussaini
,
S.
Thangam
,
S. L.
Woodruff
, and
Y.
Zhou
, “
Development of a continuous model for simulation of turbulent flows
,”
J. Appl. Mech.
73
,
441
(
2006
).
17.
L. J.
Peltier
and
F. J.
Zajaczkowski
, “
Maintenance of the near-wall cycle of turbulence for hybrid RANS/LES of fully-developed channel flow
,”
in DNS/LES Progress and Challenges, Proceedings of the 3rd AFOSR International Conference on DNS/LES
(
Kluwer Academic
,
2001
), Paper No. ADP013707.
18.
S. S.
Girimaji
, “
Partially-averaged Navier-Stokes model for turbulence: A Reynolds-averaged Navier-Stokes to direct numerical simulation bridging method
,”
J. Appl. Mech.
73
,
413
421
(
2006
).
19.
M.
Germano
, “
Readers' forum, comment on turbulence modeling for time-dependent RANS and VLES: A review
,”
AIAA J.
36
(
9
),
1766
1767
(
1998
).
20.
F. F.
Grinstein
,
J. A.
Saenz
,
R. M.
Rauenzahn
,
M.
Germano
, and
D. M.
Israel
, “
Dynamic bridging modeling for coarse grained simulations of shock driven turbulent mixing
,”
Comput. Fluids
199
,
104430
(
2020
).
21.
C. W.
Hirt
, “
Computer studies of time-dependent turbulent flows
,”
Phys. Fluids
12
,
II
219
(
1969
).
22.
L. G.
Margolin
and
W. J.
Rider
, “
Numerical regularization: The numerical analysis of implicit subgrid models
,” in
Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics
, edited by
F. F.
Grinstein
,
L. G.
Margolin
, and
W. J.
Rider
, 2nd printing (
Cambridge
:
Cambridge University Press
,
2010
), Chap. 5.
23.
F. F.
Grinstein
and
C.
Fureby
, “
On flux-limiting-based implicit large eddy simulation
,”
J. Fluids Eng
129
,
1483
1492
(
2007
).
24.
R.
von Kaenel
,
N. A.
Adams
,
L.
Kleiser
, and
J. B.
Vos
, “
The approximate deconvolution model for large-eddy simulation of compressible flows with finite volume schemes
,”
J. Fluids Eng.
124
(
4
),
829
(
2002
).
25.
S. T.
Bose
,
P.
Moin
, and
D.
You
, “
Grid-independent large-eddy simulation using explicit filtering
,”
Phys. Fluids
22
,
105103
(
2010
).
26.
P. E.
Dimotakis
, “T
he mixing transition in turbulent flows
,”
J. Fluid Mech.
409
,
69
98
(
2000
).
27.
Y.
Zhou
, “
Unification and extension of the concepts of similarity criteria and mixing transition for studying astrophysics using high energy density laboratory experiments or numerical simulations
,”
Phys. Plasmas
14
,
082701
(
2007
).
28.
A. J.
Wachtor
,
F. F.
Grinstein
,
C. R.
Devore
,
J. R.
Ristorcelli
, and
L. G.
Margolin
, “
Implicit large-eddy simulations of passive scalar mixing in statistically stationary isotropic turbulence
,”
Phys. Fluids
25
,
025101
(
2013
).
29.
J.
Jimenez
,
A. A.
Wray
,
P. G.
Saffman
, and
R. S.
Rogallo
, “
The structure of intense vorticity in isotropic turbulence
,”
J. Fluid Mech.
255
,
65
90
(
1993
).
30.
M. R.
Overholt
and
S. B.
Pope
, “
Direct numerical simulation of a passive scalar with imposed mean gradient in isotropic turbulence
,”
Phys. Fluids
8
,
3128
3148
(
1996
).
31.
D. I.
Pullin
, “
A vortex-based model for the subgrid flux of a passive scalar
,”
Phys. Fluids
12
,
2311
(
2000
).
32.
T.
Gotoh
and
T.
Watanabe
, “
Scalar flux in a uniform mean scalar gradient in homogeneous isotropic steady turbulence
,”
Phys. D
241
,
141
148
(
2012
).
33.
P. K.
Yeung
,
S.
Xu
, and
K. R.
Sreenivasan
, “
Schmidt number effects on turbulent transport with uniform mean scalar gradient
,”
Phys. Fluids
14
,
4178
4191
(
2002
).
34.
J. R.
Ristorcelli
, “
Passive scalar mixing: Analytic study of time scale ratio, variance, and mix rate
,”
Phys. Fluids
18
,
075101
(
2006
).
35.
A.
Misra
and
D. I.
Pullin
, “
A vortex-based subgrid stress model for large-eddy simulation
,”
Phys. Fluids
9
,
2443
(
1997
).
36.
J. C.
Vassilicos
, “
Dissipation in turbulent flows
,”
Annu. Rev. Fluid Mech.
47
,
95
114
(
2015
).
37.
F. F.
Grinstein
, “
Coarse grained simulation of convectively driven turbulent mixing transition and turbulence decay
,”
Physica D
407
,
132419
(
2020
).
38.
M.
Gittings
,
R.
Weaver
,
M.
Clover
,
T.
Betlach
,
N.
Byrne
,
R.
Coker
,
E.
Dendy
,
R.
Hueckstaedt
,
K.
New
,
W. R.
Oakes
,
D.
Ranta
, and
R.
Stefan
, “
The RAGE radiation hydrodynamic code
,”
Comput. Sci. Discovery
1
,
015005
(
2008
).
39.
P.
Colella
, “
Glimm's method for gas dynamics
,”
SIAM J. Sci. Stat. Comput.
3
,
76
110
(
1982
).
40.
B.
Van Leer
, “
Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method
,”
J. Comput. Phys.
135
,
229
248
(
1997
).
41.
J. C.
Dolence
and
T.
Masser
, “
A new directionally unsplit option for hydrodynamics in the Eulerian AMR code xRAGE
,”
International Conference on Numerical Methods for Multi-Material Fluid Flows (MultiMat)
, Santa Fe, NM, 18–22 September
2017
.
42.
A.
Mignone
, “
High-order conservative reconstruction schemes for finite volume methods in cylindrical and spherical coordinates
,”
J. Comput. Phys.
270
,
784
(
2014
).
43.
C.-W.
Shu
and
S.
Osher
, “
Efficient implementation of essentially non-oscillatory shock capturing schemes
,”
J. Comput. Phys.
77
,
439
(
1988
).
44.
B.
Thornber
,
A.
Mosedale
,
D.
Drikakis
,
D.
Youngs
, and
R. J. R.
Williams
, “
An improved reconstruction method for compressible flows with low Mach number features
,”
J. Comput. Phys.
227
,
4873
4894
(
2008
).
45.
A.
Harten
,
P. D.
Lax
, and
B.
van Leer
, “
On upstream differencing and Godunov-type schemes for hyperbolic conservation laws
,”
SIAM Rev.
25
,
35
61
(
1983
).
46.
E. F.
Toro
,
M.
Spruce
, and
W.
Speares
, “
Restoration of the contact surface in the HLL-Riemann solver
,”
Shock Waves
4
,
25
34
(
1994
).
47.
H.
Guillard
and
A.
Murrone
, “
On the behaviour of upwind schemes in the low Mach number limit: II. Godunov type schemes
,”
Comput. Fluids
33
,
655
675
(
2004
).
48.
D.
Youngs
and
R. J. R.
Williams
, “
Turbulent mixing in spherical implosions
,”
Int. J. Numer. Meth. Fluids
56
,
1597
1603
(
2008
).
49.
D.
Besnard
,
F. H.
Harlow
,
R. M.
Rauenzahn
, and
C.
Zemach
, “
Turbulence transport equations for variable-density turbulence and their relationship to two-field models
,” Report No. LA-UR-12303, Los Alamos National Laboratory,
1992
.
50.
B. M.
Haines
,
F. F.
Grinstein
, and
J. D.
Schwarzkopf
, “
Reynolds-averaged Navier-Stokes initialization and benchmarking in shock-driven turbulent mixing
,”
J. Turbul.
14
(
2
),
46
70
(
2013
).
51.
J. D.
Schwarzkopf
,
D.
Livescu
,
J. R.
Baltzer
,
R. A.
Gore
, and
J. R.
Ristorcelli
, “
A two-length scale turbulence model for single-phase multi-fluid mixing
,”
Flow Turbul. Combust.
96
,
1
43
(
2016
).
52.
M.
Germano
, “
Differential filters for the large eddy numerical simulation of turbulent flows
,”
Phys. Fluids
29
(
6
),
1755
1757
(
1986
).
53.
J. R.
Bull
,
M. D.
Piggot
, and
C. C.
Pain
, “
A finite element LES methodology for anisotropic inhomogeneous meshes
,” in
THMT-12. Proceedings of the Seventh International Symposium on Turbulence, Heat and Mass Transfer (
2012
), pp.
1516
1527
.
54.
M.
Germano
, “
A statistical formulation of the dynamic model
,”
Phys. Fluids
8
(
2
),
565
570
(
1996
).
55.
D. K.
Walters
,
S.
Bhushan
,
M. F.
Alam
, and
D. S.
Thompson
, “
Investigation of a dynamic hybrid RANS/LES modeling methodology for finite-volume CFD simulations
,”
Flow, Turbul. Combust.
91
(
3
),
643
667
(
2013
).
56.
S.
Bhushan
and
D. K.
Walters
, “
A dynamic hybrid Reynolds-averaged Navier-Stokes large eddy simulation modeling framework
,”
Phys. Fluids
24
(
1
),
015103
(
2012
).
57.
J.
Smagorinsky
, “
General circulation experiments with the primitive equations
,”
Mon. Weather Rev.
91
(
3
),
99
164
(
1963
).
58.
F. F.
Grinstein
, “
Initial conditions and modeling for simulations of shock driven turbulent material mixing
,”
Comput. Fluids
151
,
58
72
(
2017
).
59.
F.
Poggi
,
M.-H.
Thorembey
, and
G.
Rodriguez
, “
Velocity measurements in turbulent gaseous mixtures induced by Richtmyer-Meshkov instability
,”
Phys. Fluids
10
,
2698
(
1998
).
60.
C.
Mugler
and
S.
Gauthier
, “
Two-dimensional Navier–Stokes simulations of gaseous mixtures induced by Richtmyer–Meshkov instability
,”
Phys. Fluids
12
,
1783
(
2000
).
61.
C. W.
Barnes
,
S. H.
Batha
,
A. M.
Dunne
,
G. R.
Magelssen
,
S.
Rothman
,
R. D.
Day
,
N. E.
Elliott
,
D. A.
Haynes
,
R. L.
Holmes
,
J. M.
Scott
,
D. L.
Tubbs
,
D. L.
Youngs
,
T. R.
Boehly
, and
P.
Jaanimagi
, “
Observation of mix in a compressible plasma in a convergent cylindrical geometry
,”
Phys. Plasmas
9
,
4431
(
2002
).
62.
O.
Grégoire
,
D.
Souffland
, and
S.
Gauthier
, “
A second-order turbulence model for gaseous mixtures induced by Richtmyer-Meshkov instability
,”
J. Turbul.
6
,
N29
(
2005
).
63.
A.
Banerjee
,
R. A.
Gore
, and
M. J.
Andrews
, “
Development and validation of a turbulent-mix model for variable-density and compressible flows
,”
Phys. Rev. E
82
,
046309
(
2010
).
64.
D. J.
Hill
,
C.
Pantano
, and
D. I.
Pullin
, “
Large-eddy simulation and multiscale modeling of a Ritchmyer-Meshkov instability with reshock
,”
J. Fluid Mech.
557
,
29
61
(
2006
).
65.
F. F.
Grinstein
,
A. A.
Gowardhan
, and
A. J.
Wachtor
, “
Simulations of Richtmyer-Meshkov instabilities in planar shock-tube experiments
,”
Phys. Fluids
23
,
034106
(
2011
).
66.
F. F.
Grinstein
,
F. J. A.
Saenz
,
J. C.
Dolence
,
T. O.
Masser
,
R. M.
Rauenzahn
, and
M. M.
Francois
, “
Effects of operator splitting and low Mach-number correction in turbulent mixing transition simulations
,”
Comput. Math. Appl.
78
,
437
458
(
2019
).
67.
F. S.
Pereira
,
L.
Eça
,
G.
Vaz
, and
S. S.
Girimaji
, “
Challenges in Scale-Resolving Simulations of turbulent wake flows with coherent structures
,”
J. Comput. Phys.
363
,
98
115
(
2018
).
You do not currently have access to this content.