Underresolved simulations are unavoidable in high Reynolds (Re) and Mach (Ma) number turbulent flow applications at scale. Implicit large-Eddy simulation (ILES) often becomes the effective strategy to capture the dominating effects of convectively driven flow instabilities. We evaluate the impact of three distinct numerical strategies in simulations of transition and turbulence decay with ILES: the Harten–Lax–van Leer (HLL) Riemann solver applying Strang splitting and a Lagrange-plus-Remap formalism to solve the directional sweep—denoted split; the Harten–Lax–Van Leer-Contact (HLLC) Riemann solver using a directionally unsplit strategy and parabolic reconstruction—denoted unsplit; and the HLLC Riemann solver using unsplit and a low-Ma correction (LMC)—denoted unsplit*. Three case studies are considered: (1) a shock tube problem prototyping shock-driven turbulent mixing, (2) the Taylor–Green Vortex (TGV) prototyping transition to turbulence, and, (3) an homogeneous isotropic turbulence (HIT) case, focusing on the impact of discretization on transition and decay from fixed well-characterized initial conditions. Significantly more accurate predictions are provided by the unsplit schemes, in particular, when augmented with the LMC. For given resolution, only the unsplit schemes predict the turbulent mixing transition after reshock observed in the shock tube experiments. Relevant comparisons of ILES based on Euler and Navier–Stokes equations addressing potential occurrence of low-Re regimes in the applications are presented. Unsplit* schemes are instrumental in allowing to capture the spatial development of the TGV flow and its validation at prescribed Re with significantly less resolution. HIT analysis confirms higher simulated turbulence Re and increased small-scale content associated with the unsplit discretizations.

1.
Y.
Zhou
, “
Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. I
,”
Phys. Rep.
720–722
,
1
(
2017
).
2.
Y.
Zhou
, “
Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. II
,”
Phys. Rep.
723–725
,
1
(
2017
).
3.
F.
Grinstein
,
Coarse Grained Simulation and Turbulent Mixing
(
Cambridge University Press
,
Cambridge, UK
,
2016
), Chap. 8, pp.
193
231
.
4.
F.
Grinstein
,
L.
Margolin
, and
W.
Rider
,
Implicit Large Eddy Simulation: Computing Turbulent Flow Dynamics
, 2nd ed. (
Cambridge University Press
,
New York
,
2010
).
5.
Y.
Zhou
,
F.
Grinstein
,
A.
Wachtor
, and
B.
Haines
, “
Estimating the effective Reynolds number in implicit large-Eddy simulation
,”
Phys. Rev. E
89
,
013303
(
2014
).
6.
D.
Drikakis
,
C.
Fureby
,
F. F.
Grinstein
, and
D.
Youngs
, “
Simulation of transition and turbulence decay in the Taylor-Green vortex
,”
J. Turbul.
8
,
N20
(
2007
).
7.
F.
Grinstein
,
A.
Gowardhan
, and
A.
Wachtor
, “
Simulations of Richtmyer-Meshkov instabilities in planar shock-tube experiments
,”
Phys. Fluids
23
,
034106
(
2011
).
8.
B.
Balakumar
,
G.
Orlicz
,
C.
Tomkins
, and
K.
Prestridge
, “
Simultaneous particle-image velocimetry-planar laser-induced fluorescence measurements of Richtmyer–Meshkov instability growth in a gas curtain with and without Reshock
,”
Phys. Fluids
20
,
124103
(
2008
).
9.
G.
Orlicz
,
B.
Balakumar
,
C.
Tomkins
, and
K.
Prestridge
, “
A Mach number study of the Richtmyer-Meshkov instability in a varicose, heavy-gas curtain
,”
Phys. Fluids
21
,
064102
(
2009
).
10.
A.
Gowardhan
and
F.
Grinstein
, “
Numerical simulation of Richtmyer-Meshkov instabilities in shocked gas curtains
,”
J. Turbul.
12
,
N43
(
2011
).
11.
F.
Grinstein
,
J.
Saenz
,
J.
Dolence
,
T.
Masser
,
R.
Rauenzahn
, and
M.
Francois
, “
Effects of operator splitting and low Mach-number correction in turbulent mixing transition simulations
,”
Comput. Math. Appl.
78
,
437
(
2019
).
12.
G. I.
Taylor
and
A. E.
Green
, “
Mechanism of the production of small eddied from large ones
,”
Proc. R. Soc. A
158
,
499
(
1937
).
13.
M. E.
Brachet
,
D. I.
Meiron
,
S. A.
Orzag
,
B. G.
Nickel
,
R. H.
Morf
, and
U.
Frisch
, “
Small scale structure of the Taylor-Green vortex
,”
J. Fluid Mech.
130
,
411
(
1983
).
14.
S.
Bose
,
P.
Moin
, and
D.
You
, “
Grid-independent large-Eddy simulation using explicit filtering
,”
Phys. Fluids
22
,
105103
(
2010
).
15.
C. W.
Hirt
, “
Computer studies of time-dependent turbulent flows
,”
Phys. Fluids
12
,
II-219
(
1969
).
16.
S.
Ghosal
, “
An analysis of numerical errors in large-Eddy simulations of turbulence
,”
J. Comput. Phys.
125
,
187
(
1996
).
17.
L.
Margolin
and
W.
Rider
, “
Numerical regularization: The numerical analysis of implicit subgrid models
,” in Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics, 2nd ed., edited by F. F. Grinstein, L. G. Margolin, and W. J. Rider (Cambridge University Press, 2010), Chap. 5
18.
F.
Grinstein
and
C.
Fureby
, “
On flux-limiting-based implicit large Eddy simulation
,”
J. Fluids Eng.
129
,
1483
(
2007
).
19.
J.
Boris
, “
On large eddy simulation using subgrid turbulence models
,” in
Whither Turbulence? Turbulence at the Crossroads
, edited by
J.
Lumley
(
Springer
,
1990
), pp.
344
353
.
20.
J.
Boris
,
F.
Grinstein
,
E.
Oran
, and
R.
Kolbe
, “
New insights into large Eddy simulation
,”
Fluid Dyn. Res.
10
,
199
(
1992
).
21.
S.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
Cambridge, UK
,
2000
).
22.
M.
Fan
,
Y.
Wenren
,
W.
Dietz
,
M.
Xiao
, and
J.
Steinhoff
, “
Computing blunt body flows on coarse grids using vorticity confinement
,”
J. Fluids Eng.
124
,
876
(
2002
).
23.
J.
Domaradzki
and
N.
Adams
, “
Direct modelling of subgrid scales of turbulence in large Eddy simulations
,”
J. Turbul.
3
,
N24
(
2002
).
24.
S.
Stolz
,
N.
Adams
, and
L.
Kleiser
, “
The approximate deconvolution model for large-Eddy simulations of compressible flows and its application to shock-turbulent-boundary-layer interaction
,”
Phys. Fluids
13
,
2985
(
2001
).
25.
M.
Visbal
and
D.
Rizzetta
, “
Large-Eddy simulation on curvilinear grids using compact differencing and filtering schemes
,”
J. Fluids Eng.
124
,
836
(
2002
).
26.
O.
Schilling
and
M.
Latini
, “
High-order WENO simulations of three-dimensional reshocked Richtmyer–Meshkov instability to late times: Dynamics, dependence on initial conditions, and comparisons to experimental data
,”
Acta Math. Sci.
30
,
595
(
2010
).
27.
A.
Wachtor
,
F. G. C.
DeVore
,
J.
Ristorcelli
, and
L.
Margolin
, “
Implicit large-Eddy simulation of passive scalar mixing in statistically stationary isotropic turbulence
,”
Phys. Fluids
25
,
025101
(
2013
).
28.
P. E.
Dimotakis
, “
The mixing transition in turbulent flows
,”
J. Fluid Mech.
409
,
69
(
2000
).
29.
Y.
Zhou
, “
Unification and extension of the similarity scaling criteria and mixing transition for studying astrophysics using high energy density laboratory experiments or numerical simulations
,”
Phys. Plasmas
14
,
082701
(
2007
).
30.
W.
George
and
L.
Davidson
, “
Role of initial conditions in establishing asymptotic flow behavior
,”
AIAA J.
42
,
438
(
2004
).
31.
J.
Ristorcelli
,
A.
Gowardhan
, and
F.
Grinstein
, “
Two classes of Richtmyer-Meshkov instabilities: A detailed statistical look
,”
Phys. Fluids
25
,
044106
(
2013
).
32.
F.
Grinstein
, “
Initial conditions and modeling for simulations of shock driven turbulent material mixing
,”
Comput. Fluids
151
,
58
(
2017
).
33.
C.
Fureby
and
F.
Grinstein
, “
Monotonically integrated large Eddy simulation of free shear flows
,”
AIAA J.
37
,
544
(
1999
).
34.
Y.
Kaneda
,
T.
Ishihara
,
M.
Yokokawa
,
K.
Itakura
, and
A.
Uno
, “
Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box
,”
Phys. Fluids
15
,
L21
(
2003
).
35.
K.
Sreenivasan
, “
On the scaling of the turbulence energy dissipation rate
,”
Phys. Fluids
27
,
1048
(
1984
).
36.
K.
Sreenivasan
, “
An update on the energy dissipation rate in isotropic turbulence
,”
Phys. Fluids
10
,
528
(
1998
).
37.
U.
Frisch
,
Turbulence: The Legacy of A. N. Kolmogorov
(
Cambridge University Press
,
Cambridge, UK
,
1995
).
38.
J.
Vassilicos
, “
Dissipation in turbulent flows
,”
Annu. Rev. Fluid Mech.
47
,
95
(
2015
).
39.
M.
Gittings
,
R.
Weaver
,
M.
Clover
,
T.
Betlach
,
N.
Byrne
,
R.
Coker
,
E.
Dendy
,
R.
Hueckstaedt
,
K.
New
,
W.
Oakes
,
D.
Ranta
, and
R.
Stefan
, “
The RAGE radiation-hydrodynamic code
,”
Comput. Sci. Discovery
1
,
015005
(
2008
).
40.
F.
Pereira
,
F.
Grinstein
,
D.
Israel
, and
R.
Rauenzahn
, “
Molecular viscosity and diffusivity effects in transitional and shock-driven mixing flows
,”
Phys. Rev. E
103
,
013106
(
2021
).
41.
S.
Lyon
and
J.
Johnson
, “
SESAME: The Los Alamos national laboratory equation of state database
,”
Technical Report No. LA-UR-92-3407
(
Los Alamos National Laboratory
,
Los Alamos
,
1992
).
42.
B.
van Leer
, “
Towards the ultimate conservative difference scheme
,”
J. Comput. Phys.
135
,
229
(
1997
).
43.
P.
Colella
, “
Glimm's method for gas dynamics
,”
SIAM J. Sci. Stat. Comput.
3
,
76
(
1982
).
44.
B.
Haines
,
F.
Grinstein
, and
J.
Fincke
, “
Three-dimensional simulation strategy to determine the effects of turbulent mixing on inertial-confinement-fusion capsule performance
,”
Phys. Rev. E
89
,
053302
(
2014
).
45.
F.
Pereira
,
F.
Grinstein
, and
D.
Israel
, “
Effect of the numerical discretization scheme in shock-driven turbulent mixing
,”
Comput. Fluids
201
,
104487
(
2020
).
46.
J.
Dolence
and
T.
Masser
, “
A new directionally unsplit option for hydrodynamics in the Eulerian AMR code xRage
,” in
Proceedings of the International Conference on Numerical Methods for Multi-Material Fluid Flows (MultiMat)
,
Santa Fe
,
2017
.
47.
C.-W.
Shu
and
S.
Osher
, “
Efficient implementation of essentially non-oscillatory shock-capturing schemes
,”
J. Comput. Phys.
77
,
439
(
1988
).
48.
A.
Mignone
, “
High-order conservative reconstruction schemes for finite volume methods in cylindrical and spherical coordinates
,”
J. Comput. Phys.
270
,
784
(
2014
).
49.
B.
Thornber
,
A.
Mosedale
,
D.
Drikakis
,
D.
Youngs
, and
R.
Williams
, “
An improved reconstruction method for compressible flows with low Mach number features
,”
J. Comput. Phys.
227
,
4873
(
2008
).
50.
H.
Guillard
and
A.
Murrone
, “
On the behavior of upwind schemes in the low Mach number limit: II. Godunov type schemes
,”
Comput. Fluids
33
,
655
(
2004
).
51.
A.
Harten
,
P.
Lax
, and
B.
van Leer
, “
On upstream differencing and Godunov-type schemes for hyperbolic conservation laws
,”
SIAM Rev.
25
,
35
(
1983
).
52.
E.
Toro
,
M.
Spruce
, and
W.
Speares
, “
Restoration of the contact surface in the HLL-Riemann solver
,”
Shock Waves
4
,
25
(
1994
).
53.
A.
Gowardhan
,
S.
Balasubramanian
,
F.
Grinstein
,
K.
Prestridge
, and
J.
Ristorcelli
, “
Analysis of computational and laboratory shocked gas-curtain experiments
,” AIAA Paper No. 2011-3040,
2011
.
54.
P.
Colella
and
P.
Woodward
, “
The piecewise parabolic method (PPM) for gas-dynamical simulations
,”
J. Comput. Phys.
54
,
174
(
1984
).
55.
B.
Thornber
,
D.
Drikakis
,
D.
Youngs
, and
R.
Williams
, “
The influence of initial conditions on turbulent mixing due to Richmyer-Meshkov instability
,”
J. Fluid Mech.
654
,
99
(
2010
).
56.
F.
Pereira
,
L.
Eça
,
G.
Vaz
, and
S.
Girimaji
, “
Challenges in scale-resolving simulations of turbulent wake flows with coherent structures
,”
J. Comput. Phys.
363
,
98
(
2018
).
57.
F.
Pereira
,
L.
Eça
,
G.
Vaz
, and
S.
Girimaji
, “
On the simulation of the flow around a circular cylinder at Re = 140,000
,”
Int. J. Heat Fluid Flow
76
,
40
(
2019
).
58.
A.
Hussain
and
W.
Reynolds
, “
The mechanics of an organized wave in turbulent shear flow
,”
J. Fluid Mech.
41
,
241
(
1970
).
59.
R.
Schiestel
, “
Multiple-time-scale modeling of turbulent flows in one-point closures
,”
Phys. Fluids
30
,
722
(
1987
).
60.
J.
Hunt
,
A.
Wray
, and
P.
Moin
, “
Eddies, streams, and convergence zones in turbulent flows
,” in
Proceedings of the Summer Program 1988
(
Center for Turbulence Reseach
,
1988
), pp.
193
208
.
61.
H.
Tennekes
and
J.
Lumley
,
A First Course in Turbulence
(
MIT Press
,
Cambridge
,
1972
).
62.
P.
Davidson
,
Turbulence: An Introduction for Scientists and Engineers
(
Oxford University Press
,
Oxford, UK
,
2006
).
63.
K.
Mikaelian
, “
Effect of viscosity on Rayleigh-Taylor and Richtmyer-Meshkov instabilities
,”
Phys. Rev. E
47
,
375
(
1993
).
64.
C. R.
Weber
,
D. S.
Clark
,
A. W.
Cook
,
L. E.
Busby
, and
H. F.
Robey
, “
Inhibition of turbulence in inertial-confinement-fusion hot spots by viscous dissipation
,”
Phys. Rev. E
89
,
053106
(
2014
).
65.
F.
Pereira
,
F.
Grinstein
,
D.
Israel
,
R.
Rauenzahn
, and
S.
Girimaji
, “
Modeling and simulation of transition in the Taylor-Green vortex with pans method
,” arXiv:2012.01304 (
2020
).
66.
J.
Jeong
and
F.
Hussain
, “
On the identification of a vortex
,”
J. Fluid Mech.
285
,
69
(
1995
).
67.
ASME,
Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer
(
ASME
,
2009
).
68.
L.
Eça
and
M.
Hoekstra
, “
A procedure for the estimation of the numerical uncertainty of CFD calculations based on grid refinement studies
,”
J. Comput. Phys.
262
,
104
(
2014
).
69.
D.
Virk
,
F.
Hussain
, and
R. M.
Kerr
, “
Compressible vortex reconnection
,”
J. Fluid Mech.
304
,
47
(
1995
).
70.
F. F.
Grinstein
, “
Coarse grained simulation of convectively driven turbulent mixing, transition, and turbulence decay
,”
Physica D
407
,
132419
(
2020
).
71.
F. F.
Grinstein
, “
Self–induced vortex ring dynamics in subsonic rectangular jets
,”
Phys. Fluids
7
,
2519
(
1995
).
72.
F.
Grinstein
, “
Vortex dynamics and entrainment in rectangular free jets
,”
J. Fluid Mech.
437
,
69
(
2001
).
73.
C.
Fureby
and
F. F.
Grinstein
, “
Large Eddy simulation of high-Reynolds-number free and wall-bounded flow
,”
J. Comput. Phys.
181
,
68
(
2002
).
74.
D.
Livescu
,
J. M.-Y. M.
Petersen
, and
J.
Grove
, “
CFDNS: A computer code for DNS of turbulent follows
,” Technical Report No. LA-CC-09-100 (
Los Alamos National Laboratory
,
Los Alamos, NM
,
2009
).
75.
M.
Petersen
and
D.
Livescu
, “
Forcing for statistically stationary compressible isotropic turbulence
,”
Phys. Fluids
22
,
116101
(
2010
).
76.
D.
Livescu
and
J.
Ristorcelli
, “
Buoyancy-driven variable-density turbulence
,”
J. Fluid Mech.
591
,
43
(
2007
).
77.
D.
Livescu
and
J.
Ristorcelli
, “
Variable-density mixing in buoyancy-driven turbulence
,”
J. Fluid Mech.
605
,
145
(
2008
).
78.
M.
Lesieur
and
S.
Ossia
, “
3D isotropic turbulence at very high Reynolds numbers: EDQNM study
,”
J. Turbul.
1
,
N7
(
2000
).
79.
J.
Jiménez
,
A.
Wray
,
P.
Saffman
, and
R.
Rogallo
, “
The structure of intense vorticity in isotropic turbulence
,”
J. Fluid Mech.
255
,
65
90
(
1993
).
80.
Y.
Li
and
C.
Meneveau
, “
Origin of non-Gaussian statistics in hydrodynamic turbulence
,”
Phys. Rev. Lett.
95
,
164502
(
2005
).
81.
S.
Saddoughi
and
S.
Veeravalli
, “
Local isotropy in turbulent boundary layers at high Reynolds number
,”
J. Fluid Mech.
268
,
333
(
1994
).
82.
D.
Porter
,
A.
Pouquet
, and
P.
Woodward
, “
Kolmogorov-like spectra in decaying three-dimensional supersonic flows
,”
Phys. Fluids
6
,
2133
(
1994
).
You do not currently have access to this content.