Film cooling via tangential wall injection is universally employed to alleviate serious aerodynamic heating of the optical window in high-speed target-seeking vehicles; nevertheless the imaging quality should be concomitantly concerned due to the turbulence-aberrated aero-optical phenomenon. This flow phenomenon can be essentially abstracted into the combinational mixing layer and turbulent boundary flow configuration, enabling numerical investigation using an explicit fifth-order weighted compact nonlinear scheme (WCNS-E-5) and a ray-tracing method. The current study considers both the aero-optical effect in a prescribed light pupil and the wall temperature under adiabatic conditions, with snapshots of vorticity contours in the symmetric plane and the wall normal density fluctuation introduced as auxiliary variables for analyzing the flowfield behavior. A parametric investigation on tangential wall injection is conducted by altering the Mach number, total temperature, and total pressure consequently via a variable-controlling procedure. The results reveal that the mutual realization of aero-optical and aero-heating reduction presents considerable difficulty, so that the future optimization of the operating conditions is suggested for engineering applications.

1.
E.
Mathews
,
K.
Wang
,
M.
Wang
, and
E. J.
Jumper
, “
The wavenumber spectra of aero-optical phase distortions by weakly compressible turbulence
,”
Opt. Express
27
,
5670
(
2019
).
2.
E. J.
Jumper
and
S.
Gordeyev
, “
Physics and measurement of aero-optical effects: Past and present
,”
Annu. Rev. Fluid Mech.
49
,
419
(
2017
).
3.
S.
Lee
,
H.
Yoon
,
I.-S.
Jeung
,
H. J.
Lee
, and
J. K.
Lee
,
Super-/Hypersonic Aero-Optical Effects Induced by External Jet Cooling
(
Springer International Publishing
,
Cham
,
2017
).
4.
S.
Gordeyev
,
J. A.
Cress
, and
E. J.
Jumper
, “
Aero-optical measurements in a subsonic, turbulent boundary layer with non-adiabatic walls
,”
Phys. Fluids
27
,
045110
(
2015
).
5.
R. Z.
Tian
,
H. L.
Xu
,
Q. L.
Dong
, and
Z. Y.
Ye
, “
Numerical investigation of aero-optical effects of flow past a flat-windowed cylindrical turret
,”
Phys. Fluids
32
,
056103
(
2020
).
6.
M.
Konopka
,
M.
Meinke
, and
W.
Schröder
, “
Large-Eddy simulation of shock-cooling-film interaction at helium and hydrogen injection
,”
Phys. Fluids
25
,
106101
(
2013
).
7.
S. M. H. B.
Abadi
,
S.
Zirak
, and
M. R.
Zargarabadi
, “
Effect of pulsating injection and mainstream attack angle on film cooling performance of a gas turbine blade
,”
Phys. Fluids
32
,
117102
(
2020
).
8.
C. K.
Yuan
,
J. P.
Li
,
Z. L.
Jiang
, and
H. R.
Yu
, “
Experimental investigation of liquid film cooling in hypersonic flow
,”
Phys. Fluids
31
,
046101
(
2019
).
9.
X. W.
Sun
and
W.
Liu
, “
Research progress of aero-optical effect (in Chinese)
,”
Adv. Mech.
50
,
202008
(
2020
).
10.
X. W.
Sun
and
W.
Liu
, “
Validation case for supersonic boundary layer and turbulent aero-optical investigation in high-Reynolds-number freestream by WCNS-E-5
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
234
,
2153
(
2020
).
11.
X. W.
Sun
,
X. L.
Yang
, and
W.
Liu
, “
Aero-optical suppression for supersonic turbulent boundary layer
,”
J. Turbul.
22
,
1
(
2021
).
12.
X. W.
Sun
,
X. L.
Yang
, and
W.
Liu
, “
Validation method of aero-optical effect simulation for supersonic turbulent boundary layer
,”
AIAA J.
59
,
410
(
2021
).
13.
X. W.
Sun
,
X. L.
Yang
, and
W.
Liu
, “
Numerical investigation on aero-optical reduction for supersonic turbulent mixing layer
,”
Int. J. Aeronaut. Space Sci.
(published online
2020
).
14.
X. W.
Sun
,
W.
Liu
, and
Z. X.
Chai
, “
Method of investigation for numerical simulation on aero-optical effect based on WCNS-E-5
,”
AIAA J.
57
,
2017
(
2019
).
15.
P.
Marquardt
,
M.
Klaas
, and
W.
Schröder
, “
Comparison of shock/cooling-film interaction for cooled and isoenergetic injection
,”
AIAA J.
58
,
2077
(
2020
).
16.
X. H.
Zhao
,
S. H.
Yi
, and
H. L.
Ding
, “
Aero-optical testing of a Mach 3 cooling film
,”
Optik
225
,
165721
(
2021
).
17.
X. H.
Zhao
,
S. H.
Yi
, and
H. L.
Ding
, “
Influence of cooling film pressure on the imaging quality of a hypersonic optical dome
,”
Opt. Eng.
59
,
013104
(
2020
).
18.
D. D.
Zhang
,
J. G.
Tan
, and
X.
Yao
, “
Direct numerical simulation of spatially developing highly compressible mixing layer: Structural evolution and turbulent statistics
,”
Phys. Fluids
31
,
036102
(
2019
).
19.
C. B.
Li
and
X. Y.
Jiang
, “
Flow structures in transitional and turbulent boundary layers
,”
Phys. Fluids
31
,
111301
(
2019
).
20.
X.
Wang
,
Z. G.
Wang
,
M. B.
Sun
,
Q. C.
Wang
, and
Z. W.
Hu
, “
Effects of favorable pressure gradient on turbulence structures and statistics of a flat-plate supersonic turbulent boundary layer
,”
Phys. Fluids
32
,
025107
(
2020
).
21.
S.
Muppidi
and
K.
Mahesh
, “
Direct numerical simulations of roughness-induced transition in supersonic boundary layers
,”
J. Fluid Mech.
693
,
28
(
2012
).
22.
P.
Marquardt
,
M.
Klaas
, and
W.
Schröder
, “
Experimental investigation of isoenergetic film-cooling flows with shock interaction
,”
AIAA J.
57
,
3910
(
2019
).
23.
D. P.
Lewis
and
J. A.
Schetz
, “
Tangential injection from overlaid slots into a supersonic stream
,”
J. Propul. Power
13
,
59
(
1997
).
24.
P.
Yulia
and
S.
Pierre
, “
Theoretical prediction of turbulent skin friction on geometrically complex surfaces
,”
J. Propul. Power
22
,
1334
(
2009
).
25.
M.
Konopka
,
M.
Meinke
, and
W.
Schröder
, “
Large-Eddy simulation of shock/cooling-film interaction
,”
AIAA J.
50
,
2102
(
2012
).
26.
P. J.
Hu
,
B. S.
Jiang
,
H. L.
Pan
, and
X. L.
Cheng
, “
Large Eddy simulation of supersonic turbulent mixing layer
,”
J. Phys.: Conf. Ser.
1053
,
012072
(
2018
).
27.
M.
Konopka
,
M.
Meinke
, and
W.
Schröder
, “
Large-Eddy simulation of supersonic film cooling
,” AIAA Paper No. 2010-6782,
2010
.
28.
F. J.
Liu
,
Y. F.
Wang
, and
Y.
Piao
, “
Linear stability analysis of interactions between mixing layer and boundary layer flows
,”
Chin. J. Aeronaut.
30
,
1327
(
2017
).
29.
B. R.
Vinoth
and
A. V.
Gholap
, “
Stability analysis of a laminar wall jet in a decelerating external flow
,”
AIAA J.
58
,
3700
(
2020
).
30.
M. R.
Kemnetz
,
S.
Gordeyev
,
P.
Ranade
, and
E. J.
Jumper
, “
Optical investigation of turbulence modulation in an externally forced high Reynolds number boundary layer
,” in 10th International Symposium on Turbulence and Shear Flow Phenomena, Chicago, Illinois (
2017
), pp. 5B–3.
31.
Y. Z.
Zhu
,
Experimental Investigation on Supersonic Flow over an Optical Dome with Backward Facing Step and Its Aero-Optical Effects (in Chinese
) (
National University of Defense Technology
,
2015
).
32.
J.
Fu
,
Study on the Supersonic Cooling Film of the Hypersonic Optical Dome and Its Mechanism of Aero Optics (in Chinese)
(
National University of Defense Technology
,
2017
).
33.
H. L.
Ding
,
S. H.
Yi
, and
X. H.
Zhao
, “
Experimental investigation of aero-optics induced by supersonic film based on near-field background-oriented Schlieren
,”
Appl. Opt.
58
,
2948
(
2019
).
34.
S. E.
Elghobashi
and
A. T.
Wassel
, “
The effect of turbulent heat transfer on the propagation of an optical beam across supersonic boundary/shear layers
,”
Int. J. Heat Mass Transfer
23
,
1229
(
1980
).
35.
C. H.
Su
, “
Aero-optical analysis of a film-cooled optical window based on linear stability analysis
,”
AIAA J.
57
,
2840
(
2019
).
36.
H. X.
Xiong
,
S. H.
Yi
,
H. L.
Ding
,
X. W.
Xu
, and
Y.
Si
, “
Numerical simulation of film cooling effect and aero-optical effect of optical window
,”
Proc. SPIE
11338
,
113380C
(
2019
).
37.
C. Q.
Song
and
C. B.
Shen
, “
Numerical simulation of supersonic film cooling in a rearward-facing slot
,”
Adv. Mech. Eng.
9
,
1
(
2017
).
38.
S. Y.
Wang
,
X. G.
Deng
,
G. X.
Wang
, and
X. L.
Yang
, “
Blending the Eddy-viscosity and Reynolds-stress models using uniform high-order discretization
,”
AIAA J.
58
,
5361
(
2020
).
39.
S. Y.
Wang
,
M. M.
Ge
,
X. G.
Deng
,
Q. Y.
Yu
, and
G. X.
Wang
, “
Blending of algebraic transition model and subgrid model for separated transitional flows
,”
AIAA J.
57
,
4684
(
2019
).
40.
H. L.
Ding
,
S. H.
Yi
,
X. H.
Zhao
,
H. X.
Xiong
, and
T. C.
Ou Yang
, “
Experimental investigation on aero-optical mitigation of hypersonic optical dome using microvortex generators
,”
AIAA J.
57
,
2653
(
2019
).
41.
S. G.
Goebel
,
J. C.
Dutton
,
H.
Krier
, and
J. P.
Renie
, “
Mean and turbulent velocity measurements of supersonic mixing layers
,”
Exp. Fluids
8
,
263
(
1990
).
42.
S.
Gordeyev
,
A. E.
Smith
,
J. A.
Cress
, and
E. J.
Jumper
, “
Experimental studies of aero-optical properties of subsonic turbulent boundary layers
,”
J. Fluid Mech.
740
,
214
(
2014
).
43.
H. L.
Ding
,
S. H.
Yi
,
X. H.
Zhao
,
J. R.
Yi
, and
L.
He
, “
Research on aero-optical prediction of supersonic turbulent boundary layer based on aero-optical linking equation
,”
Opt. Express
26
,
31317
(
2018
).
44.
S. G.
Goebel
and
J. C.
Dutton
, “
Experimental study of compressible turbulent mixing layers
,”
AIAA J.
29
,
538
(
1991
).
45.
X. W.
Sun
,
W.
Huang
,
M.
Ou
,
R. R.
Zhang
, and
S. B.
Li
, “
A survey on numerical simulations of drag and heat reduction mechanism in supersonic/hypersonic flows
,”
Chin. J. Aeronaut.
32
,
771
(
2019
).
You do not currently have access to this content.