The Reynolds number effects and scaling on response and recovery of flow over square bar roughness elements are numerically examined at a range of Reynolds numbers between 5 × 103 and 1.56 × 105. The square bar roughness element has a height of 0.05D, where D is the pipe diameter. The response is examined using streamline plots and reattachment lengths. An asymptotic trend is observed in reattachment lengths with increasing the Reynolds number. The recovery is examined quantitatively by tracing the transport of Reynolds shear stress downstream of the roughness element. While the overall trend for recovery is similar for all Reynolds numbers, the collapse of stresses toward the wall appears earlier at lower Reynolds numbers. The recovery trends follow a power-law of diffusion toward the centerline. The point of initial response, that is, the point of collapse, appears independent from the effects of Reynolds numbers at Re ≥ 5.0 × 104.

1.
H.
Choi
,
J.
Lee
, and
H.
Park
, “
Aerodynamics of heavy vehicles
,”
Annu. Rev. Fluid Mech.
46
,
441
468
(
2014
).
2.
W.
Hucho
and
G.
Sovran
, “
Aerodynamics of road vehicles
,”
Annu. Rev. Fluid Mech.
25
,
485
537
(
1993
).
3.
J.
Katz
, “
Aerodynamics of race cars
,”
Annu. Rev. Fluid Mech.
38
,
27
63
(
2006
).
4.
J.
Lin
,
F.
Howard
, and
G.
Selby
, “
Exploratory study of vortex-generating devices for turbulent flow separation control
,” in
29th Aerospace Sciences Meeting
(
1991
), p.
42
.
5.
G. P.
Corten
,
Flow Separation on Wind Turbine Blades
(
University of Utrecht
,
2001
).
6.
S.
Verma
and
A.
Hemmati
, “
Performance of overset mesh in modeling the wake of sharp-edge bodies
,”
Computation
8
,
66
(
2020
).
7.
A.
Baskaran
and
A.
Kashef
, “
Investigation of air flow around buildings using computational fluid dynamics techniques
,”
Eng. Struct.
18
,
861
875
(
1996
).
8.
D. A.
Paterson
and
C. J.
Apelt
, “
Simulation of wind flow around three-dimensional buildings
,”
Build. Environ.
24
,
39
50
(
1989
).
9.
A. J.
Smits
,
S. T. B.
Young
, and
P.
Bradshaw
, “
The effect of short regions of high surface curvature on turbulent boundary layers
,”
J. Fluid Mech.
94
,
209
242
(
1979
).
10.
A.
Smits
,
L.
Ding
, and
T.
Van Buren
, “
Flow over a square bar roughness
,” in
Proceedings of Turbulence and Shear Flow Phenomena
(
2019
), Vol. 11.
11.
S.
Leonardi
,
P.
Orlandi
,
R. J.
Smalley
,
L.
Djenidi
, and
R. A.
Antonia
, “
Direct numerical simulations of turbulent channel flow with transverse square bars on one wall
,”
J. Fluid Mech.
491
,
229
238
(
2003
).
12.
F.
Nygård
and
H. I.
Andersson
, “
Numerical simulation of turbulent pipe flow through an abrupt axisymmetric constriction
,”
Flow, Turbul. Combust.
91
,
1
18
(
2013
).
13.
J.
Jiménez
, “
Turbulent flows over rough walls
,”
Annu. Rev. Fluid Mech.
36
,
173
196
(
2004
).
14.
Z. D.
Shi
,
T. S.
Lee
, and
S. H.
Winoto
, “
Flow in a pipe with a ring-type obstacle
,”
Int. J. Comput. Fluid Dyn.
6
,
225
237
(
1996
).
15.
R. R.
Hwang
,
Y. C.
Chow
, and
Y. F.
Peng
, “
Numerical study of turbulent flow over two-dimensional surface-mounted ribs in a channel
,”
Int. J. Numer. Methods Fluids
31
,
767
785
(
1999
).
16.
R. R.
Hwang
,
Y. C.
Chow
, and
T. P.
Chiang
, “
Numerical predictions of turbulent flow over a surface-mounted rib
,”
J. Eng. Mech.
125
,
497
503
(
1999
).
17.
D.
Cappelli
and
N. N.
Mansour
, “
Performance of Reynolds averaged Navier-Stokes models in predicting separated flows: Study of the hump flow model problem
,” in
31st AIAA Applied Aerodynamics Conference
(
AIAA
,
2013
), p.
3154
.
18.
C.
Rumsey
,
T.
Gatski
,
W.
Sellers
,
V.
Vatsa
, and
S.
Viken
, “
Summary of the 2004 CFD validation workshop on synthetic jets and turbulent separation control
,” in
2nd AIAA Flow Control Conference
(
AIAA
,
2004
), p.
2217
.
19.
M. B. T.
Fogaing
,
A.
Hemmati
,
C. F.
Lange
, and
B. A.
Fleck
, “
Performance of turbulence models in simulating wind loads on photovoltaics modules
,”
Energies
12
,
3290
(
2019
).
20.
A.
Hemmati
,
D. H.
Wood
, and
R. J.
Martinuzzi
, “
On simulating the flow past a normal thin flat plate
,”
J. Wind Eng. Ind. Aerodyn.
174
,
170
187
(
2018
).
21.
S.
Goswami
and
A.
Hemmati
, “
Response of turbulent pipeflow to multiple square bar roughness elements at high Reynolds number
,”
Phys. Fluids
32
,
075110
(
2020
).
22.
F.
Durst
and
A.-B.
Wang
, “
Experimental and numerical investigations of the axisymmetric, turbulent pipe flow over a wall-mounted thin obstacle
,” in
7th Symposium on Turbulent Shear Flows
(
1989
), Vol. 1, pp.
10
14
.
23.
F.
Durst
,
M.
Founti
, and
A.
Wang
, “
Experimental investigation of the flow through an axisymmetric constriction
,”
Turbulent Shear Flows
(
Springer
,
1989
), Vol. 6, pp.
338
350
.
24.
G.
Dimaczek
,
C.
Tropea
, and
A.-B.
Wang
, “
Turbulent flow over two-dimensional, surface-mounted obstacles: Plane and axisymmetric geometries
,”
Advances in Turbulence
(
Springer
,
1989
), Vol. 2, pp.
114
121
.
25.
M. V.
Zagarola
and
A. J.
Smits
, “
Mean-flow scaling of turbulent pipe flow
,”
J. Fluid Mech.
373
,
33
79
(
1998
).
26.
M.
Hultmark
,
S. C. C.
Bailey
, and
A. J.
Smits
, “
Scaling of near-wall turbulence in pipe flow
,”
J. Fluid Mech.
649
,
103
(
2010
).
27.
M.
Hultmark
,
M.
Vallikivi
,
S. C. C.
Bailey
, and
A.
Smits
, “
Turbulent pipe flow at extreme Reynolds numbers
,”
Phys. Rev. Lett.
108
,
094501
(
2012
).
28.
M.
Hultmark
,
M.
Vallikivi
,
S. C. C.
Bailey
, and
A. J.
Smits
, “
Logarithmic scaling of turbulence in smooth- and rough-wall pipe flow
,”
J. Fluid Mech.
728
,
376
(
2013
).
29.
U.
Senturk
and
A. J.
Smits
, “
Roughness effects in laminar pipe flow
,” arXiv:1905.12479 (
2019
).
30.
Y.
Liu
,
J.
Li
, and
A. J.
Smits
, “
Roughness effects in laminar channel flow
,”
J. Fluid Mech.
876
,
1129
1145
(
2019
).
31.
B. E.
Launder
and
D. B.
Spalding
, “
The numerical computation of turbulent flows
,” in
Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion
(
Elsevier
,
1983
), pp.
96
116
.
32.
M. S.
Shah
,
J. B.
Joshi
,
A. S.
Kalsi
,
C. S. R.
Prasad
, and
D. S.
Shukla
, “
Analysis of flow through an orifice meter: CFD simulation
,”
Chem. Eng. Sci.
71
,
300
309
(
2012
).
33.
T.
Yamagata
,
A.
Ito
,
Y.
Sato
, and
N.
Fujisawa
, “
Experimental and numerical studies on mass transfer characteristics behind an orifice in a circular pipe for application to pipe-wall thinning
,”
Exp. Therm. Fluid Sci.
52
,
239
247
(
2014
).
34.
F.
Liu
, “
A thorough description of how wall functions are implemented in openfoam
,” in Proceedings of CFD with OpenSource Software, edited by
H.
Nilsson
,
2016
.
35.
OpenFOAM—The Open Source CFD Toolbox, User Guide v1906, v1906 ed.,
2019
.
36.
H. K.
Moffatt
, “
Viscous and resistive eddies near a sharp corner
,”
J. Fluid Mech.
18
,
1
18
(
1964
).
37.
S.
Jovic
and
D.
Driver
, “
Reynolds number effect on the skin friction in separated flows behind a backward-facing step
,”
Exp. Fluids
18
,
464
467
(
1995
).
38.
E. W.
Adams
and
J. P.
Johnston
, “
Effects of the separating shear layer on the reattachment flow structure part 2: Reattachment length and wall shear stress
,”
Exp. Fluids
6
,
493
499
(
1988
).
39.
N.
Furuichi
,
Y.
Terao
,
Y.
Wada
, and
Y.
Tsuji
, “
Friction factor and mean velocity profile for pipe flow at high Reynolds numbers
,”
Phys. Fluids
27
,
095108
(
2015
).
You do not currently have access to this content.