We experimentally study the hydrodynamic instability of a lean-premixed flame stabilized behind a circular cylinder. On reducing the equivalence ratio (ϕ) at a fixed Reynolds number (ReD), we find that the flame transitions from a steady mode to a varicose mode and then to a sinuous mode. By examining time-resolved CH* chemiluminescence images and analyzing how the Strouhal number scales with ReD, we determine that the varicose mode is convectively unstable, maintained by the amplification of disturbances in the turbulent base flow, whereas the sinuous mode is globally unstable as a result of the constructive interaction between the two diametrically opposite shear layers (Bénard–von Kármán instability). We attribute the emergence of the sinuous global mode to the flame moving sufficiently far downstream with decreasing ϕ that it is out of the wavemaker region. Finally, we investigate the lean blowoff dynamics and find that local flame pinch-off, which occurs at the end of the recirculation zone, is a reliable precursor of global flame blowoff.

1.
N.
Syred
and
J.
Beer
, “
Combustion in swirling flows: A review
,”
Combust. Flame
23
,
143
201
(
1974
).
2.
S.
Candel
,
D.
Durox
,
T.
Schuller
,
J.-F.
Bourgouin
, and
J. P.
Moeck
, “
Dynamics of swirling flames
,”
Annu. Rev. Fluid Mech.
46
,
147
173
(
2014
).
3.
R. W.
Pitz
and
J. W.
Daily
, “
Combustion in a turbulent mixing layer formed at a rearward-facing step
,”
AIAA J.
21
,
1565
1570
(
1983
).
4.
A.
Ben-Yakar
and
R. K.
Hanson
, “
Cavity flame-holders for ignition and flame stabilization in scramjets: An overview
,”
J. Propul. Power
17
,
869
877
(
2001
).
5.
C.
Coats
, “
Coherent structures in combustion
,”
Prog. Energy Combust. Sci.
22
,
427
509
(
1996
).
6.
S.
Nair
and
T. C.
Lieuwen
, “
Near-blowoff dynamics of a bluff-body stabilized flame
,”
J. Propul. Power
23
,
421
427
(
2007
).
7.
S. J.
Shanbhogue
,
S.
Husain
, and
T.
Lieuwen
, “
Lean blowoff of bluff body stabilized flames: Scaling and dynamics
,”
Prog. Energy Combust. Sci.
35
,
98
120
(
2009
).
8.
L.
Cifuentes
,
C.
Dopazo
,
A.
Sandeep
,
N.
Chakraborty
, and
A.
Kempf
, “
Analysis of flame curvature evolution in a turbulent premixed bluff body burner
,”
Phys. Fluids
30
,
095101
(
2018
).
9.
J. M.
Chomaz
,
P.
Huerre
, and
L. G.
Redekopp
, “
Bifurcations to local and global modes in spatially developing flows
,”
Phys. Rev. Lett.
60
,
25
(
1988
).
10.
P.
Huerre
and
P. A.
Monkewitz
, “
Local and global instabilities in spatially developing flows
,”
Annu. Rev. Fluid Mech.
22
,
473
537
(
1990
).
11.
B.
Pier
, “
On the frequency selection of finite-amplitude vortex shedding in the cylinder wake
,”
J. Fluid Mech.
458
,
407
417
(
2002
).
12.
J. M.
Chomaz
, “
Global instabilities in spatially developing flows: Non-normality and nonlinearity
,”
Annu. Rev. Fluid Mech.
37
,
357
392
(
2005
).
13.
F.
Giannetti
and
P.
Luchini
, “
Structural sensitivity of the first instability of the cylinder wake
,”
J. Fluid Mech.
581
,
167
(
2007
).
14.
B.
Emerson
,
T.
Lieuwen
, and
M.
Juniper
, “
Local stability analysis and eigenvalue sensitivity of reacting bluff-body wakes
,”
J. Fluid Mech.
788
,
549
575
(
2016
).
15.
M.
Provansal
,
C.
Mathis
, and
L.
Boyer
, “
Bénard-von Kármán instability: Transient and forced regimes
,”
J. Fluid Mech.
182
,
1
(
1987
).
16.
L. K. B.
Li
and
M. P.
Juniper
, “
Lock-in and quasiperiodicity in a forced hydrodynamically self-excited jet
,”
J. Fluid Mech.
726
,
624
655
(
2013
).
17.
L. K. B.
Li
and
M. P.
Juniper
, “
Phase trapping and slipping in a forced hydrodynamically self-excited jet
,”
J. Fluid Mech.
735
,
1
11
(
2013
).
18.
Y.
Zhu
,
V.
Gupta
, and
L. K. B.
Li
, “
Onset of global instability in low-density jets
,”
J. Fluid Mech.
828
,
R1
(
2017
).
19.
M.
Lee
,
Y.
Zhu
,
L. K. B.
Li
, and
V.
Gupta
, “
System identification of a low-density jet via its noise-induced dynamics
,”
J. Fluid Mech.
862
,
200
215
(
2019
).
20.
T. C.
Lieuwen
and
V.
Yang
,
Combustion Instabilities in Gas Turbine Engines
, Progress in Astronautics and Aeronautics (
American Institute of Aeronautics and Astronautics
,
Reston, VA
,
2005
).
21.
F. E. C.
Culick
, “
Unsteady motions in combustion chambers for propulsion systems
,” Report No. AGARDograph AG-AVT-039 (
North Atlantic Treaty Organisation
,
2006
).
22.
S.
Candel
, “
Combustion dynamics and control: Progress and challenges
,”
Proc. Combust. Inst.
29
,
1
28
(
2002
).
23.
T. C.
Lieuwen
,
Unsteady Combustor Physics
(
Cambridge University Press
,
2012
).
24.
A. P.
Dowling
and
A. S.
Morgans
, “
Feedback control of combustion oscillations
,”
Annu. Rev. Fluid Mech.
37
,
151
182
(
2005
).
25.
N.
Noiray
,
D.
Durox
,
T.
Schuller
, and
S.
Candel
, “
Passive control of combustion instabilities involving premixed flames anchored on perforated plates
,”
Proc. Combust. Inst.
31
,
1283
1290
(
2007
).
26.
H.
Gotoda
,
M.
Amano
,
T.
Miyano
,
T.
Ikawa
,
K.
Maki
, and
S.
Tachibana
, “
Characterization of complexities in combustion instability in a lean premixed gas-turbine model combustor
,”
Chaos
22
,
043128
(
2012
).
27.
S.
Domen
,
H.
Gotoda
,
T.
Kuriyama
,
Y.
Okuno
, and
S.
Tachibana
, “
Detection and prevention of blowout in a lean premixed gas-turbine model combustor using the concept of dynamical system theory
,”
Proc. Combust. Inst.
35
,
3245
3253
(
2015
).
28.
S.
Balusamy
,
L. K. B.
Li
,
Z.
Han
,
M. P.
Juniper
, and
S.
Hochgreb
, “
Nonlinear dynamics of a self-excited thermoacoustic system subjected to acoustic forcing
,”
Proc. Combust. Inst.
35
,
3229
3236
(
2015
).
29.
G.
Rigas
,
N. P.
Jamieson
,
L. K. B.
Li
, and
M. P.
Juniper
, “
Experimental sensitivity analysis and control of thermoacoustic systems
,”
J. Fluid Mech.
787
,
R1
(
2016
).
30.
T.
Poinsot
, “
Prediction and control of combustion instabilities in real engines
,”
Proc. Combust. Inst.
36
,
1
28
(
2017
).
31.
D.
Zhao
,
Z.
Lu
,
H.
Zhao
,
X.
Li
,
B.
Wang
, and
P.
Liu
, “
A review of active control approaches in stabilizing combustion systems in aerospace industry
,”
Prog. Aerosp. Sci.
97
,
35
(
2018
).
32.
K.
Kashinath
,
L. K. B.
Li
, and
M. P.
Juniper
, “
Forced synchronization of periodic and aperiodic thermoacoustic oscillations: Lock-in, bifurcations and open-loop control
,”
J. Fluid Mech.
838
,
690
714
(
2018
).
33.
Y.
Guan
,
M.
Murugesan
, and
L. K. B.
Li
, “
Strange nonchaotic and chaotic attractors in a self-excited thermoacoustic oscillator subjected to external periodic forcing
,”
Chaos
28
,
093109
(
2018
).
34.
S.
Mondal
,
S. A.
Pawar
, and
R. I.
Sujith
, “
Forced synchronization and asynchronous quenching of periodic oscillations in a thermoacoustic system
,”
J. Fluid Mech.
864
,
73
96
(
2019
).
35.
Y.
Guan
,
V.
Gupta
,
K.
Kashinath
, and
L. K. B.
Li
, “
Open-loop control of periodic thermoacoustic oscillations: Experiments and low-order modelling in a synchronization framework
,”
Proc. Combust. Inst.
37
,
5315
5323
(
2019
).
36.
Y.
Guan
,
W.
He
,
M.
Murugesan
,
Q.
Li
,
P.
Liu
, and
L. K. B.
Li
, “
Control of self-excited thermoacoustic oscillations using transient forcing, hysteresis and mode switching
,”
Combust. Flame
202
,
262
275
(
2019
).
37.
Y.
Guan
,
V.
Gupta
,
M.
Wan
, and
L. K. B.
Li
, “
Forced synchronization of quasiperiodic oscillations in a thermoacoustic system
,”
J. Fluid Mech.
879
,
390
421
(
2019
).
38.
R. I.
Sujith
and
V. R.
Unni
, “
Complex system approach to investigate and mitigate thermoacoustic instability in turbulent combustors
,”
Phys. Fluids
32
,
061401
(
2020
).
39.
R. I.
Sujith
and
V. R.
Unni
, “
Dynamical systems and complex systems theory to study unsteady combustion
,”
Proc. Combust. Inst.
in press (
2020
).
40.
M.
Juniper
, “
Absolute and convective instability in gas turbine fuel injectors
,” in
Proceedings of ASME Turbo Expo
(
ASME International Gas Turbine Institute
,
Copenhagen, Denmark
,
2012
), p.
gT2012-68253
.
41.
C. H.
Williamson
, “
Vortex dynamics in the cylinder wake
,”
Annu. Rev. Fluid Mech.
28
,
477
539
(
1996
).
42.
A.
Prasad
and
C. H. K.
Williamson
, “
The instability of the shear layer separating from a bluff body
,”
J. Fluid Mech.
333
,
375
402
(
1997
).
43.
B.
Kiel
,
K.
Garwick
,
J.
Gord
,
J.
Miller
,
A.
Lynch
,
R.
Hill
, and
S.
Phillips
, “
A detailed investigation of bluff body stabilized flames
,” in
45th AIAA Aerospace Sciences Meeting and Exhibit
(
2007
), p.
168
.
44.
R.
Erickson
and
M.
Soteriou
, “
The influence of reactant temperature on the dynamics of bluff body stabilized premixed flames
,”
Combust. Flame
158
,
2441
2457
(
2011
).
45.
B.
Emerson
,
J.
Lundrigan
,
J.
O'Connor
,
D.
Noble
, and
T.
Lieuwen
, “
Dependence of the bluff body wake structure on flame temperature ratio
,” in
49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition
(
2011
), p.
597
.
46.
B.
Emerson
,
J.
Lundrigan
,
J.
O'Connor
,
D.
Noble
, and
T.
Lieuwen
, “
Convective and absolute instabilities in reacting bluff body wakes
,” in
ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition
(
American Society of Mechanical Engineers
,
2011
), pp.
377
387
.
47.
B.
Emerson
,
J.
O'Connor
,
M.
Juniper
, and
T.
Lieuwen
, “
Density ratio effects on reacting bluff-body flow field characteristics
,”
J. Fluid Mech.
706
,
219
250
(
2012
).
48.
J.
Hertzberg
,
I.
Shepherd
, and
L.
Talbot
, “
Vortex shedding behind rod stabilized flames
,”
Combust. Flame
86
,
1
11
(
1991
).
49.
B.
Kiel
,
K.
Garwick
,
A.
Lynch
,
J.
Gord
, and, and
T.
Meyer
, “
Non-reacting and combusting flow investigation of bluff bodies in cross flow
,” in
42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit
(
2006
), p. 5234.
50.
S.
Chaudhuri
,
S.
Kostka
,
M. W.
Renfro
, and
B. M.
Cetegen
, “
Blowoff mechanism of harmonically forced bluff body stabilized turbulent premixed flames
,”
Combust. Flame
159
,
638
640
(
2012
).
51.
C. Y.
Lee
,
L. K. B.
Li
,
M. P.
Juniper
, and
R. S.
Cant
, “
Nonlinear hydrodynamic and thermoacoustic oscillations of a bluff-body stabilised turbulent premixed flame
,”
Combust. Theory Modell.
20
,
131
153
(
2016
).
52.
K. R.
Anderson
,
J.
Hertzberg
, and
S.
Mahalingam
, “
Classification of absolute and convective instabilities in premixed bluff body stabilized flames
,”
Combust. Sci. Technol.
112
,
257
269
(
1996
).
53.
M. P.
Juniper
,
L. K. B.
Li
, and
J. W.
Nichols
, “
Forcing of self-excited round jet diffusion flames
,”
Proc. Combust. Inst.
32
,
1191
1198
(
2009
).
54.
L. K. B.
Li
and
M. P.
Juniper
, “
Lock-in and quasiperiodicity in hydrodynamically self-excited flames: Experiments and modelling
,”
Proc. Combust. Inst.
34
,
947
954
(
2013
).
55.
Y.
Guan
,
L. K. B.
Li
,
B.
Ahn
, and
K. T.
Kim
, “
Chaos, synchronization, and desynchronization in a liquid-fueled diffusion-flame combustor with an intrinsic hydrodynamic mode
,”
Chaos
29
,
053124
(
2019
).
56.
K.
Manoharan
and
S.
Hemchandra
, “
Absolute/convective instability transition in a backward facing step combustor: Fundamental mechanism and influence of density gradient
,”
J. Eng. Gas Turbines Power
137
,
021501
(
2015
).
57.
S.
Terhaar
,
T. G.
Reichel
,
C.
Schrödinger
,
L.
Rukes
,
C. O.
Paschereit
, and
K.
Oberleithner
, “
Vortex breakdown types and global modes in swirling combustor flows with axial injection
,”
J. Propul. Power
31
,
219
229
(
2015
).
58.
Q.
An
,
W. Y.
Kwong
,
B. D.
Geraedts
, and
A. M.
Steinberg
, “
Coupled dynamics of lift-off and precessing vortex core formation in swirl flames
,”
Combust. Flame
168
,
228
239
(
2016
).
59.
J. W.
Nichols
and
P. J.
Schmid
, “
The effect of a lifted flame on the stability of round fuel jets
,”
J. Fluid Mech.
609
,
275
284
(
2008
).
60.
U. A.
Qadri
,
G. J.
Chandler
, and
M. P.
Juniper
, “
Self-sustained hydrodynamic oscillations in lifted jet diffusion flames: Origin and control
,”
J. Fluid Mech.
775
,
201
222
(
2015
).
61.
G.
Barenblatt
,
The Mathematical Theory of Combustion and Explosions
(
Springer
1985).
62.
D.
Bradley
,
P.
Gaskell
,
X.
Gu
,
M.
Lawes
, and
M.
Scott
, “
Premixed turbulent flame instability and NO formation in a lean-burn swirl burner
,”
Combust. Flame
115
,
515
538
(
1998
).
63.
J.
Yuan
,
Y.
Ju
, and
C.
Law
, “
Effects of turbulence and flame instability on flame front evolution
,”
Phys. Fluids
18
,
104105
(
2006
).
64.
K.-L.
Pan
, “
Transformation of premixed flame behavior with hydrodynamic and body-force instabilities
,”
Phys. Fluids
20
,
044106
(
2008
).
65.
M.
Stöhr
,
I.
Boxx
,
C.
Carter
, and
W.
Meier
, “
Dynamics of lean blowout of a swirl-stabilized flame in a gas turbine model combustor
,”
Proc. Combust. Inst.
33
,
2953
2960
(
2011
).
66.
R.
Erickson
,
M.
Soteriou
, and
P.
Mehta
, “
The influence of temperature ratio on the dynamics of bluff body stabilized flames
,” in
44th AIAA Aerospace Sciences Meeting and Exhibit
(
2006
), p.
753
.
67.
K. S.
Kedia
and
A. F.
Ghoniem
, “
The blow-off mechanism of a bluff-body stabilized laminar premixed flame
,”
Combust. Flame
162
,
1304
1315
(
2015
).
68.
Y. J.
Kim
,
B. J.
Lee
, and
H. G.
Im
, “
Hydrodynamic and chemical scaling for blow-off dynamics of lean premixed flames stabilized on a meso-scale bluff-body
,”
Proc. Combust. Inst.
37
,
1831
1841
(
2019
).
69.
G.
Berkooz
,
P.
Holmes
, and
J. L.
Lumley
, “
The proper orthogonal decomposition in the analysis of turbulent flows
,”
Annu. Rev. Fluid Mech.
25
,
539
575
(
1993
).
70.
L.
Sirovich
, “
Turbulence and the dynamics of coherent structures. i. coherent structures
,”
Quart. Appl. Math.
45
,
561
571
(
1987
).
71.
A.
Roshko
, “
On the wake and drag of bluff bodies
,”
J. Aeronaut. Sci.
22
,
124
132
(
1955
).
72.
P.
Bearman
, “
On vortex shedding from a circular cylinder in the critical Reynolds number regime
,”
J. Fluid Mech.
37
,
577
585
(
1969
).
73.
P. J.
Strykowski
and
K. R.
Sreenivasan
, “
On the formation and suppression of vortex ‘shedding’ at low Reynolds numbers
,”
J. Fluid Mech.
218
,
71
107
(
1990
).
74.
G. S.
Cardell
, “
Flow past a circular cylinder with a permeable wake splitter plate
,” Ph.D. thesis (
California Institute of Technology
,
1993
).
75.
S.
Kostka
,
A. C.
Lynch
,
B. C.
Huelskamp
,
B. V.
Kiel
,
J. R.
Gord
, and
S.
Roy
, “
Characterization of flame-shedding behavior behind a bluff-body using proper orthogonal decomposition
,”
Combust. Flame
159
,
2872
2882
(
2012
).
76.
J. E.
Broadwell
,
W. J.
Dahm
, and
M. G.
Mungal
, “
Blowout of turbulent diffusion flames
,” in
Proceedings of the Combustion Institute
(
Elsevier
,
1985
), Vol.
20
, pp.
303
310
.
You do not currently have access to this content.