A three-dimensional computational fluid dynamics analysis of low Reynolds number [O(104)] flow over a 30P30N three-element high lift wing is carried out using a high-order spectral element method. In this article, we study the flow in the slat cove region and the slat wake/shear layer interaction. Vortical structures, identified in the computations, are very similar to those visualized in recent experiments. For Reynolds numbers below a critical interval (found in recent experiments), Görtler vortices are observed in the slat wake, while for Reynolds numbers above the critical interval, a roll-up is observed in the slat cove and both streamwise and spanwise vortices form in the slat wake. Prior to the formation of Görtler and roll-up vortices, three-dimensional tongue- or rib-like vortex shapes, similar to those found in the wake of bluff bodies, are observed in the slat cove and promote transition to three-dimensional flow. Above the critical interval, streaks and spanwise vortices are observed to dominate the slat wake and lead to the formation of hairpin vortices which contribute to the transition to turbulence. Integral flow parameters such as lift, drag, and pressure coefficients are analyzed in the range of Reynolds numbers studied.

1.
P. B. S.
Lissaman
, “
Low-Reynolds-number airfoils
,”
Annu. Rev. Fluid Mech.
15
,
223
239
(
1983
).
2.
C. P.
van Dam
, “
The aerodynamic design of multi-element high-lift systems for transport airplanes
,”
Prog. Aerosp. Sci.
38
,
101
144
(
2002
).
3.
F.
Lynch
,
R.
Potter
, and
F.
Spaid
, “
Requirements for effective high lift CFD
,” in
20th ICAS Congress
(
1996
), pp.
1479
1482
.
4.
S. M.
Klausmeyer
and
J. C.
Lin
, “
Comparative results from a CFD challenge over a 2D three-element high-lift airfoil
,” NASA Technical Memorandum No. 112858,
1997
.
5.
S.
Rogers
,
F.
Menter
,
P.
Durbin
, and
N.
Mansour
, “
A comparison of turbulence models in computing multi-element airfoil flows
,” in
32nd Aerospace Sciences Meeting and Exhibit
(
1994
).
6.
W. O.
Valarezo
and
D. J.
Mavriplis
, “
Navier-Stokes applications to high-lift airfoil analysis
,”
J. Aircraft
32
,
618
624
(
1995
).
7.
C. J.
Dominik
, “
Application of the incompressible Navier-Stokes equations to high-lift flows
,” AIAA Paper No. 94-1872,
1994
.
8.
K.
Jones
,
R.
Biedron
, and
M.
Whitlock
, “
Application of a Navier-Stokes solver to the analysis of multi-element airfoils and wings using multi-zonal grid techniques
,” AIAA Paper No. 95-1855,
1995
.
9.
J.
Bodart
,
J.
Larsson
, and, and
P.
Moin
, “
Large eddy simulation of high-lift devices
,” AIAA Paper No. 2013-2724,
2013
.
10.
R.
Langtry
and
F.
Menter
, “
Transition modeling for general CFD applications in aeronautics
,” AIAA Paper No. 2005-522,
2005
.
11.
S.
Deck
and
R.
Laraufie
, “
Numerical investigation of the flow dynamics past a three-element aerofoil
,”
J. Fluid Mech.
732
,
401
444
(
2013
).
12.
S. M.
Hosseini
,
R.
Vinuesa
,
P.
Schlatter
,
A.
Hanifi
, and
D. S.
Henningson
, “
Direct numerical simulation of the flow around a wing section at moderate Reynolds number
,”
Int. J. Heat Fluid Flow
61
,
117
128
(
2016
).
13.
P.
Balakumar
, “
Direct numerical simulation of flows over an NACA-0012 airfoil at low and moderate Reynolds numbers
,” AIAA Paper No. 2017-3978,
2017
.
14.
P.
Balakumar
, “
Effects of tripping on the flow over an NACA-0012 airfoil at a moderate Reynolds number
,” AIAA Paper 2018-4036,
2018
.
15.
B.
Carmichael
, “
Low Reynolds number airfoil survey
,” Report No. NASA-CR-165803,
1981
.
16.
T. J.
Mueller
and
J. D.
DeLaurier
, “
Aerodynamics of small vehicles
,”
Annu. Rev. Fluid Mech.
35
,
89
111
(
2003
).
17.
I.
Tani
, “
Low-speed flows involving bubble separations
,”
Prog. Aerosp. Sci.
5
,
70
103
(
1964
).
18.
M.
Brendel
and
T. J.
Mueller
, “
Boundary-layer measurements on an airfoil at low Reynolds numbers
,”
J. Aircraft
25
,
612
617
(
1988
).
19.
A.
Dovgal
,
V.
Kozlov
, and
A.
Michalke
, “
Laminar boundary layer separation: Instability and associated phenomena
,”
Prog. Aerosp. Sci.
30
,
61
94
(
1994
).
20.
J. M.
Lin
and
L. L.
Pauley
, “
Low-Reynolds-number separation on an airfoil
,”
AIAA J.
34
,
1570
1577
(
1996
).
21.
F.-B.
Hsiao
,
C.-F.
Liu
, and
Z.
Tang
, “
Aerodynamic performance and flow structure studies of a low Reynolds number airfoil
,”
AIAA J.
27
,
129
137
(
1989
).
22.
M.
Lang
,
U.
Rist
, and
S.
Wagner
, “
Investigations on controlled transition development in a laminar separation bubble by means of LDA and PIV
,”
Exp. Fluids
36
,
43
52
(
2004
).
23.
J. S.
Wang
,
L. H.
Feng
,
J. J.
Wang
, and
T.
Li
, “
Görtler vortices in low-Reynolds-number flow over multi-element airfoil
,”
J. Fluid Mech.
835
,
898
935
(
2018
).
24.
J. S.
Wang
,
J. J.
Wang
, and
K. C.
Kim
, “
Wake/shear layer interaction for low-Reynolds-number flow over multi-element airfoil
,”
Exp. Fluids
60
,
1
24
(
2019
).
25.
P.
Hall
, “
Görtler vortices in growing boundary layers: The leading edge receptivity problem, linear growth and the nonlinear breakdown stage
,”
Mathematika
37
,
151
189
(
1990
).
26.
J.
Floryan
, “
On the Görtler instability of boundary layers
,”
Prog. Aerosp. Sci.
28
,
235
271
(
1991
).
27.
W. S.
Saric
, “
Görtler vortices
,”
Annu. Rev. Fluid Mech.
26
,
379
409
(
1994
).
28.
H.
Mitsudharmadi
,
S.
Winoto
, and
D.
Shah
, “
Splitting and merging of Görtler vortices
,”
Phys. Fluids
17
,
124102
(
2005
).
29.
A.
Sescu
,
V.
Sassanis
,
J. S.
Haywood
, and
M.
Visbal
, “
Study of the impact of localized roughness elements on Görtler instabilities
,” AIAA Paper No. 2015-0275,
2015
.
30.
S.
Yarusevych
,
P. E.
Sullivan
, and
J. G.
Kawall
, “
Coherent structures in an airfoil boundary layer and wake at low Reynolds numbers
,”
Phys. Fluids
18
,
044101
(
2006
).
31.
J.
Ren
and
S.
Fu
, “
Secondary instabilities of Görtler vortices in high-speed boundary layer flows
,”
J. Fluid Mech.
781
,
388
421
(
2015
).
32.
P.
Fischer
,
J.
Lottes
,
S.
Kerkemeier
,
A.
Obabko
, and
K.
Heisey
, https://nek5000.mcs.anl.gov/ for “
Nek5000 [Software]. Mathematics and Computer Science Division of Argonne National Laboratory
,” (accessed 4 October,
2019
).
33.
A. T.
Patera
, “
A spectral element method for fluid dynamics: Laminar flow in a channel expansion
,”
J. Comput. Phys.
54
,
468
488
(
1984
).
34.
M. O.
Deville
,
P. F.
Fischer
, and, and
E.
Mund
,
High-Order Methods for Incompressible Fluid Flow
(
Cambridge University Press
,
2002
).
35.
M.
Khorrami
,
M.
Choudhari
, and, and
L.
Jenkins
, “
Characterization of unsteady flow structures near leading-edge slat: Part 2: 2D computations
,” AIAA Paper No. 2004-2802,
2004
.
36.
L. U.
Schrader
,
L.
Brandt
, and
D. S.
Henningson
, “
Receptivity mechanisms in three-dimensional boundary-layer flows
,”
J. Fluid Mech.
618
,
209
241
(
2009
).
37.
D.
Tempelmann
,
L. U.
Schrader
,
A.
Hanifi
,
L.
Brandt
, and, and
D.
Henningson
, “
Numerical study of boundary-layer receptivity on a swept wing
,” AIAA Paper No. 2011-3294,
2011
.
38.
C.
Geuzaine
and
J.
Remacle
, “
Gmsh: A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities
,”
Int. J. Numer. Methods Eng.
79
,
1309
1331
(
2009
).
39.
H.
Yuan
, see https://github.com/yhaomin2007/Nek5000/ for “
gmsh2nek. Mathematics and Computer Science Division of Argonne National Laboratory
” (accessed 4 October,
2019
).
40.
H.
Weller
,
G.
Tabor
,
H.
Jasak
, and
C.
Fureby
, “
A tensorial approach to computational continuum mechanics using object-oriented techniques
,”
Comput. Phys.
12
,
620
631
(
1998
).
41.
K.
Mittal
and
P.
Fischer
, “
Mesh smoothing for the spectral element method
,”
J. Sci. Comput.
78
,
1152
1173
(
2019
).
42.
N.
Offermans
,
O.
Marin
,
M.
Schanen
,
J.
Gong
,
P.
Fischer
,
P.
Schlatter
,
A.
Obabko
,
A.
Peplinski
,
M.
Hutchinson
, and, and
E.
Merzari
, “
On the strong scaling of the spectral element solver Nek5000 on petascale systems
,” in
Proceedings of the Exascale Applications and Software Conference
(
2016
) pp.
1
10
.
43.
S.
Klausmeyer
and
J.
Lin
, “
An experimental investigation of skin friction on a multi-element airfoil
,” in
12th Applied Aerodynamics Conference
(
1994
).
44.
K.
Pascioni
,
L. N.
Cattafesta
, and, and
M. M.
Choudhari
, “
An experimental investigation of the 30P30N multi-element high-lift airfoil
,” AIAA Paper No. 2014-3062,
2014
.
45.
V.
Chin
,
D.
Peters
,
F.
Spaid
, and, and
R.
Mcghee
, “
Flowfield measurements about a multi-element airfoil at high Reynolds numbers
,” in
23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference
(
1993
).
46.
C.
Williamson
, “
The existence of two stages in the transition to three-dimensionality of a cylinder wake
,”
Phys. Fluids
31
,
3165
3168
(
1988
).
47.
C.
Williamson
, “
Three-dimensional wake transition
,”
J. Fluid Mech.
328
,
345
407
(
1996
).
48.
J.
Robichaux
,
S.
Balachandar
, and
S. P.
Vanka
, “
Three-dimensional Floquet instability of the wake of square cylinder
,”
Phys. Fluids
11
,
560
578
(
1999
).
49.
G.
Agbaglah
and
C.
Mavriplis
, “
Computational analysis of physical mechanisms at the onset of three-dimensionality in the wake of a square cylinder
,”
J. Fluid Mech.
833
,
631
647
(
2017
).
50.
G.
Agbaglah
and
C.
Mavriplis
, “
Three-dimensional wakes behind cylinders of square and circular cross-section: Early and long-time dynamics
,”
J. Fluid Mech.
870
,
419
432
(
2019
).
51.
C. H.
Williamson
, “
Vortex dynamics in the cylinder wake
,”
Annu. Rev. Fluid Mech.
28
,
477
539
(
1996
).
52.
X.
Chen
,
J.
Chen
,
X.
Yuan
,
G.
Tu
, and
Y.
Zhang
, “
From primary instabilities to secondary instabilities in Görtler vortex flows
,”
Adv. Aerodyn.
1
,
19
(
2019
).
53.
J.
Ren
and
S.
Fu
, “
Nonlinear development of the multiple Görtler modes in hypersonic boundary layer flows
,” AIAA Paper No. 2013-2467,
2013
.
54.
S.
Winoto
,
D.
Shah
,
H.
Mitsudharmadi
 et al, “
Flows over concave surfaces: Development of pre-set wavelength Görtler vortices
,”
Int. J. Fluid Mach. Syst.
1
,
10
23
(
2008
).
55.
M.
Acarlar
and
C.
Smith
, “
A study of hairpin vortices in a laminar boundary layer. Part 2: Hairpin vortices generated by fluid injection
,”
J. Fluid Mech.
175
,
43
83
(
1987
).
56.
A.
Haidari
and
C.
Smith
, “
The generation and regeneration of single hairpin vortices
,”
J. Fluid Mech.
277
,
135
162
(
1994
).
You do not currently have access to this content.