SARS-CoV-2 (COVID-19) as an airborne respiratory disease led to a bunch of open questions: how teaching in classrooms is possible and how the risk of infection can be reduced, e.g., by the use of air purifier systems. In this study, the transmission of aerosols in a classroom is analyzed numerically and experimentally. The aerosol concentration in a classroom equipped with an air purifier system was measured with an aerosol spectrometer (optical particle sizer, TSI Incorporated) at different locations. The transient reduction of the aerosol concentration, which was artificially generated by an aerosol generator (di-ethyl hexyl sebacate-atomizer, detected particle size ranging from 0.3 to 10 μm), was monitored. The experimental results were used to validate a numerical simulation model of the classroom using the Open Source Computational Fluid Dynamics code OpenFOAM® (version 6). With the numerical simulation model, different scenarios with infected persons in the room have been analyzed, showing that the air purifier system leads to a significant reduction of airborne particles in the room dependent on the location of the infected person. The system can support additional ventilation strategies with fresh air, especially in cold seasons.

1.
Y.
Bai
,
L.
Yao
,
T.
Wei
,
F.
Tian
,
D.-Y.
Jin
,
L.
Chen
, and
M.
Wang
, “
Presumed asymptomatic carrier transmission of COVID-19
,”
J. Am. Med. Assoc.
323
(
14
),
1406
1407
(
2020
).
2.
S.
Asadi
,
N.
Bouvier
,
A. S.
Wexler
, and
W. D.
Ristenpart
, “
The coronavirus pandemic and aerosols: Does COVID-19 transmit via expiratory particles?
,”
Aerosol Sci. Technol.
54
(
6
),
635
638
(
2020
).
3.
L.
Bourouiba
, “
Turbulent gas clouds and respiratory pathogen emissions: Potential implications for reducing transmission of COVID-19
,”
J. Am. Med. Assoc.
323
,
1837
1838
(
2020
).,
4.
R.
Mittal
,
C.
Meneveau
, and
W.
Wu (武文)
, “
A mathematical framework for estimating risk of airborne transmission of COVID-19 with application to face mask use and social distancing
,”
Phys. Fluids
32
,
101903
(
2020
).
5.
G.
Seminara
,
B.
Carli
,
G.
Forni
,
S.
Fuzzi
,
A.
Mazzino
, and
A.
Rinaldo
, “
Biological fluid dynamics of airborne COVID-19 infection
,”
Rend. Lincei Sci. Fis. Nat.
31
,
505
537
(
2020
).
6.
S.
Chaudhuri
,
S.
Basu
,
P.
Kabi
,
V. R.
Unni
, and
A.
Saha
, “
Modeling the role of respiratory droplets in Covid-19 type pandemics
,”
Phys. Fluids
32
(
6
),
63309
(
2020
)..
7.
B.
Wang
,
H.
Wu
, and
X.-F.
Wan
, “
Transport and fate of human expiratory droplets—A modeling approach
,”
Phys. Fluids
32
(
8
),
83307
(
2020
)..
8.
C. P.
Cummins
,
O. J.
Ajayi
,
F. V.
Mehendale
,
R.
Gabl
, and
I. M.
Viola
, “
The dispersion of spherical droplets in source–sink flows and their relevance to the COVID-19 pandemic
,”
Phys. Fluids
32
(
8
),
83302
(
2020
)..
9.
H.
(李红英) Li
,
F. Y.
(梁芳耀) Leong
,
G.
(徐祥国) Xu
,
Z.
(葛正威) Ge
,
C. W.
(江功伟) Kang
, and
K. H.
(林金辉) Lim
, “
Dispersion of evaporating cough droplets in tropical outdoor environment
,”
Phys. Fluids
32
(
11
),
113301
(
2020
).
10.
M.-R.
Pendar
and
J. C.
Páscoa
, “
Numerical modeling of the distribution of virus carrying saliva droplets during sneeze and cough
,”
Phys. Fluids
32
(
8
),
83305
(
2020
)..
11.
G.
Busco
,
S. R.
(양세로) Yang
,
J.
(서요섭) Seo
, and
Y. A.
Hassan
, “
Sneezing and asymptomatic virus transmission
,”
Phys. Fluids
32
(
7
),
73309
(
2020
).
12.
S.
Verma
,
M.
Dhanak
, and
J.
Frankenfield
, “
Visualizing droplet dispersal for face shields and masks with exhalation valves
,”
Phys. Fluids
32
(
9
),
91701
(
2020
)..
13.
R.
Mittal
,
R.
Ni
, and
J.
Seo
, “
The flow physics of COVID-19
,”
J. Fluid Mech.
894
,
F2
(
2020
).
14.
M. A.
Kohanski
,
L. J.
Lo
, and
M. S.
Waring
, “
Review of indoor aerosol generation, transport, and control in the context of COVID-19
,”
Int. Forum Allergy Rhinol.
10
,
1173
1197
(
2020
).
15.
J. W.
Tang
,
Y.
Li
,
I.
Eames
,
P. K. S.
Chan
, and
G. L.
Ridgeway
, “
Factors involved in the aerosol transmission of infection and control of ventilation in healthcare premises
,”
J. Hosp. Infect.
64
(
2
),
100
114
(
2006
).
16.
Y.
Li
,
G. M.
Leung
,
J. W.
Tang
,
X.
Yang
,
C. Y.
Chao
,
J. Z.
Lin
,
J. W.
Lu
,
P. V.
Nielsen
,
J.
Niu
,
H.
Qian
et al, “
Role of ventilation in airborne transmission of infectious agents in the built environment – A multidisciplinary systematic review
,”
Indoor Air
17
(
1
),
2
18
(
2007
).
17.
X.
(邵晓亮) Shao
and
X.
(李先庭) Li
, “
COVID-19 transmission in the first presidential debate in 2020
,”
Phys. Fluids
32
(
11
),
115125
(
2020
).
18.
V.
Vuorinen
et al, “
Modelling aerosol transport and virus exposure with numerical simulations in relation to SARS-CoV-2 transmission by inhalation indoors
,”
Saf. Sci.
130
,
104866
(
2020
).
19.
R. K.
Bhagat
,
M. S.
Davies Wykes
,
S. B.
Dalziel
, and
P. F.
Linden
, “
Effects of ventilation on the indoor spread of COVID-19
,”
J. Fluid Mech.
903
,
F1
(
2020
).
20.
D. S.
Thatiparti
,
U.
Ghia
, and
K. R.
Mead
, “
Computational fluid dynamics study on the influence of an alternate ventilation configuration on the possible flow path of infectious cough aerosols in a mock airborne infection isolation room
,”
Sci. Technol. Built Environ.
23
(
2
),
355
366
(
2017
).
21.
L.
Yang
,
X.
Li
,
Y.
Yan
, and
J.
Tu
, “
Effects of cough-jet on airflow and contaminant transport in an airliner cabin section
,”
J. Comput. Multiphase Flows
10
(
2
),
72
82
(
2018
).
22.
H.
Yu
,
K.
Mui
, and
L.
Wong
, “
Numerical simulation of bioaerosol particle exposure assessment in office environment from MVAC systems
,”
J. Comput. Multiphase Flows
10
(
2
),
59
71
(
2018
).
23.
H.
(刘晗) Liu
,
S.
(贺思达) He
,
L.
(沈炼) Shen
, and
J.
(洪家荣) Hong
, “
Simulation-based study of COVID-19 outbreak associated with air-conditioning in a restaurant
,”
Phys. Fluids
33
(
2
),
23301
(
2021
)..
24.
A.
Nazari
,
M.
Jafari
,
N.
Rezaei
,
F.
Taghizadeh-Hesary
, and
F.
Taghizadeh-Hesary
, “
Jet fans in the underground car parking areas and virus transmission
,”
Phys. Fluids
33
(
1
),
13603
(
2021
)..
25.
Z.
Zhang
,
T.
Han
,
K. H.
Yoo
,
J.
Capecelatro
,
A.
Boehman
, and
K.
Maki
, “
Disease transmission through expiratory aerosols on an urban bus
,”
Phys. Fluids
33
,
015116
(
2021
).
26.
F.
Ascione
,
R. F.
De Masi
,
M.
Mastellone
, and
G. P.
Vanoli
, “
The design of safe classrooms of educational buildings for facing contagions and transmission of diseases: A novel approach combining audits, calibrated energy models, building performance (BPS) and computational fluid dynamic (CFD) simulations
,”
Energy Build.
230
,
110533
(
2021
).
27.
M.
Abuhegazy
,
K.
Talaat
,
O.
Anderoglu
, and
S. V.
Poroseva
, “
Numerical investigation of aerosol transport in a classroom with relevance to COVID-19
,”
Phys. Fluids
32
(
10
),
103311
(
2020
).
28.
B. A.
Craven
and
G. S.
Settles
, “
A computational and experimental investigation of the human thermal plume
,”
J. Fluids Eng.
128
,
1251
1258
(
2006
).
29.
D.
Licina
,
J.
Pantelic
,
A.
Melikov
,
C.
Sekhar
, and
K. W.
Tham
, “
Experimental investigation of the human convective boundary layer in a quiescent indoor environment
,”
Build. Environ.
75
,
79
91
(
2014
).
30.
S. M.
Kinahan
,
D. B.
Silcott
,
B. E.
Silcott
,
R. M.
Silcott
,
P. J.
Silcott
,
B. J.
Silcott
,
S. L.
Distelhorst
,
V. L.
Herrera
,
D. N.
Rivera
,
K. K.
Crown
,
G. A.
Lucero
, and
J. L.
Santarpia
, “
Aerosol tracer testing in Boeing 767 and 777 aircraft to simulate exposure potential of infectious aerosol such as SARS-CoV-2
,” medRxiv 2021.01.11.21249626. https://doi.org/10.1101/2021.01.11.21249626
31.
Z.
Zhang
and
Q.
Chen
, “
Experimental measurements and numerical simulations of particle transport and distribution in ventilated rooms
,”
Atmos. Environ.
40
,
3396
3408
(
2006
).
32.
R.
He
,
L.
Gao
,
M.
Trifonov
, and
J.
Hong
, “
Aerosol generation from different wind instruments
,”
J. Aerosol Sci.
151
,
105669
(
2021
).
33.
B.
Zhao
,
Y.
Liu
, and
C.
Chen
, “
Air purifiers: A supplementary measure to remove airborne SARS-CoV-2
,”
Build. Environ.
177
,
106918
(
2020
).
34.
E. S.
Mousavi
,
K. J.
Godri Pollitt
,
J.
Sherman
, and
R. A.
Martinello
, “
Performance analysis of portable HEPA filters and temporary plastic anterooms on the spread of surrogate coronavirus
,”
Build. Environ.
183
,
107186
(
2020
).
35.
P. M.
Bluyssen
,
M.
Ortiz
, and
D.
Zhang
, “
The effect of a mobile HEPA filter system on ‘infectious’ aerosols, sound and air velocity in the SenseLab
,”
Build. Environ.
188
,
107475
(
2021
).
36.
H.-S.
Han
,
A.
Sreenath
,
N. T.
Birkeland
, and
G. J.
Chancellor
, “
Performance of a high resolution optical particle spectrometer
,” EAC2011,
Manchester, UK
, September
2011
.
You do not currently have access to this content.