Mass transfer is a crucial phenomenon in designing and scaling up chemical and biochemical stirred tanks. The literature lacks a pilot-scale study on investigating mass transfer in non-Newtonian fluids. A pilot-scale study is a prerequisite step before scaling up the process from laboratory to industrial-scale. Thus, a study using pilot-scale stirred tank was conducted to investigate bubble hydrodynamics and mass transfer in non-Newtonian fluids. This work is a scale-up study from laboratory to pilot-scale. Axial distributions of bubble–liquid mass transfer coefficient and interfacial area were obtained using dedicated in situ optical endoscope probes (oxygen and bubble size) simultaneously. Volumetric mass transfer coefficient was determined by recording local dissolved oxygen concentrations in liquid. Interfacial area was estimated by measuring local bubble size and global gas holdup. Bubble–liquid mass transfer coefficient was then deduced by combining the obtained values of volumetric mass transfer coefficient and interfacial area. Effects of operating conditions, fluid rheology, and probe axial positions (liquid height) on bubble–liquid mass transfer coefficient were considered. The operating conditions (power inputs and superficial gas velocities) were in the range of 30–250 W/m3 and 3.10–4.70 mm/s, respectively. Bubble–liquid mass transfer coefficient increased with an increase in operating conditions, whereas it decreased with an increase in fluid rheology and liquid height. Scale-up effects on mass transfer were higher for water than viscous fluids, as suggested by large deviation (9.6%) in values of bubble–liquid mass transfer coefficient.

1.
F.
Garcia-Ochoa
and
E.
Gomez
, “
Theoretical prediction of gas-liquid mass transfer coefficient, specific area and hold-up in sparged stirred tanks
,”
Chem. Eng. Sci.
59
(
12
),
2489
2501
(
2004
).
2.
F.
García-Ochoa
and
E.
Gómez
, “
Mass transfer coefficient in stirred tank reactors for xanthan gum solutions
,”
Biochem. Eng. J.
1
(
1
),
1
10
(
1998
).
3.
S. S.
de Jesus
,
J.
Moreira Neto
, and
R.
Maciel Filho
, “
Hydrodynamics and mass transfer in bubble column, conventional airlift, stirred airlift and stirred tank bioreactors, using viscous fluid: A comparative study
,”
Biochem. Eng. J.
118
,
70
81
(
2017
).
4.
S. S.
Alves
,
C. I.
Maia
, and
J. M. T.
Vasconcelos
, “
Gas-liquid mass transfer coefficient in stirred tanks interpreted through bubble contamination kinetics
,”
Chem. Eng. Process. Process Intensif.
43
(
7
),
823
830
(
2004
).
5.
S. S.
Alves
,
C. I.
Maia
,
J. M. T.
Vasconcelos
, and
A. J.
Serralheiro
, “
Bubble size in aerated stirred tanks
,”
Chem. Eng. J.
89
(
1–3
),
109
117
(
2002
).
6.
V.
Linek
,
M.
Kordač
,
M.
Fujasová
, and
T.
Moucha
, “
Gas-liquid mass transfer coefficient in stirred tanks interpreted through models of idealized eddy structure of turbulence in the bubble vicinity
,”
Chem. Eng. Process. Process Intensif.
43
(
12
),
1511
1517
(
2004
).
7.
V.
Linek
,
M.
Kordač
, and
T.
Moucha
, “
Mechanism of mass transfer from bubbles in dispersions. II. Mass transfer coefficients in stirred gas-liquid reactor and bubble column
,”
Chem. Eng. Process. Process Intensif.
44
(
1
),
121
130
(
2005
).
8.
M.
Bouaifi
and
M.
Roustan
, “
Bubble size and mass transfer coefficients in dual-impeller agitated reactors
,”
Can. J. Chem. Eng.
76
(
3
),
390
397
(
1998
).
9.
M.
Bouaifi
,
G.
Hebrard
,
D.
Bastoul
, and
M.
Roustan
, “
A comparative study of gas hold-up, bubble size, interfacial area and mass transfer coefficients in stirred gas-liquid reactors and bubble columns
,”
Chem. Eng. Process. Process Intensif.
40
(
2
),
97
111
(
2001
).
10.
T.
Lacassagne
,
S.
Simoëns
,
M.
El Hajem
,
A.
Lyon
, and
J. Y.
Champagne
, “
Oscillating grid turbulence in shear-thinning polymer solutions
,”
Phys. Fluids
31
(
8
),
083102
(
2019
).
11.
M. M. L.
de Figueiredo
and
P. H.
Calderbank
, “
The scale-up of aerated mixing vessels for specified oxygen dissolution rates
,”
Chem. Eng. Sci.
34
(
11
),
1333
1338
(
1979
).
12.
V.
Cappello
,
C.
Plais
,
C.
Vial
, and
F.
Augier
, “
Bubble size and liquid-side mass transfer coefficient measurements in aerated stirred tank reactors with non-Newtonian liquids
,”
Chem. Eng. Sci.
211
,
115280
(
2020
).
13.
H.
Ali
and
J.
Solsvik
, “
Axial distributions of bubble-liquid mass transfer coefficient in laboratory-scale stirred tank with viscous Newtonian and non-Newtonian fluids
,”
Phys. Fluids
32
(
12
),
123308
(
2020
).
14.
A. B.
Metzner
and
R. E.
Otto
, “
Agitation of non‐Newtonian fluids
,”
AIChE J.
3
(
1
),
3
10
(
1957
).
15.
M. M.
Cross
, “
Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems
,”
J. Colloid Sci.
20
(
5
),
417
437
(
1965
).
16.
H. A.
Jakobsen
,
Chemical Reactor Modeling: Multiphase Reactive Flows
, 2nd ed. (
Springer International Publishing
,
Cham
,
2014
).
17.
A. X.
Meng
,
G. A.
Hill
, and
A. K.
Dalai
, “
Modified volume expansion method for measuring gas holdup
,”
Can. J. Chem. Eng.
80
(
2
),
194
199
(
2002
).
18.
A. H. G.
Cents
,
D. W. F.
Brilman
, and
G. F.
Versteeg
, “
Ultrasonic investigation of hydrodynamics and mass transfer in a gas-liquid(-liquid) stirred vessel
,”
Int. J. Chem. Reactor Eng.
3
(
1
),
A19
(
2005
).
19.
F.
Garcia-Ochoa
and
E.
Gomez
, “
Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview
,”
Biotechnol. Adv.
27
(
2
),
153
176
(
2009
).
20.
M.
Michelin
,
A. M.
de Oliveira Mota
,
M.
Polizeli M de LT de
,
D. P.
da Silva
,
A. A.
Vicente
, and
J. A.
Teixeira
, “
Influence of volumetric oxygen transfer coefficient (kLa) on xylanases batch production by Aspergillus niger van Tieghem in stirred tank and internal-loop airlift bioreactors
,”
Biochem. Eng. J.
80
,
19
26
(
2013
).
21.
A. C.
Badino
,
M. C. R.
Facciotti
, and
W.
Schmidell
, “
Volumetric oxygen transfer coefficients (kLa) in batch cultivations involving non-Newtonian broths
,”
Biochem. Eng. J.
8
(
2
),
111
119
(
2001
).
22.
E. K.
Nauha
,
O.
Visuri
,
R.
Vermasvuori
, and
V.
Alopaeus
, “
A new simple approach for the scale-up of aerated stirred tanks
,”
Chem. Eng. Res. Des.
95
,
150
161
(
2015
).
23.
F.
Scargiali
,
A.
Busciglio
,
F.
Grisafi
, and
A.
Brucato
, “
Simplified dynamic pressure method for kLa measurement in aerated bioreactors
,”
Biochem. Eng. J.
49
(
2
),
165
172
(
2010
).
24.
V.
Linek
,
P.
Beneš
,
V.
Vacek
, and
F.
Hovorka
, “
Analysis of differences in kℓa values determined by steady-state and dynamic methods in stirred tanks
,”
Chem. Eng. J.
25
(
1
),
77
88
(
1982
).
25.
F.
Scargiali
,
R.
Russo
,
F.
Grisafi
, and
A.
Brucato
, “
Mass transfer and hydrodynamic characteristics of a high aspect ratio self-ingesting reactor for gas–liquid operations
,”
Chem. Eng. Sci.
62
(
5
),
1376
1387
(
2007
).
26.
S.
Maaß
,
J.
Rojahn
,
R.
Hänsch
, and
M.
Kraume
, “
Automated drop detection using image analysis for online particle size monitoring in multiphase systems
,”
Comput. Chem. Eng.
45
,
27
37
(
2012
).
27.
R. P.
Panckow
,
L.
Reinecke
,
M. C.
Cuellar
, and
S.
Maaß
, “
Photo-optical in-situ measurement of drop size distributions: Applications in research and industry
,”
Oil Gas Sci. Technol. –Rev. d'IFP Energies Nouvelles
72
(
3
),
14
(
2017
).
28.
R. P.
Panckow
,
G.
Comandè
,
S.
Maaß
, and
M.
Kraume
, “
Determination of particle size distributions in multiphase systems containing nonspherical fluid particles
,”
Chem. Eng. Technol.
38
(
11
),
2011
2016
(
2015
).
29.
S.
Maaß
,
S.
Wollny
,
A.
Voigt
, and
M.
Kraume
, “
Experimental comparison of measurement techniques for drop size distributions in liquid/liquid dispersions
,”
Exp. Fluids
50
(
2
),
259
269
(
2011
).
30.
I.
Dittler
,
W.
Dornfeld
,
R.
Schöb
 et al., “
A cost-effective and reliable method to predict mechanical stress in singleuse and standard pumps
,”
J. Visualized Exp.
5
(
102
),
e53052
(
2015
).
31.
B. D.
Prasher
and
G. B.
Wills
, “
Mass transfer in an agitated vessel
,”
Ind. Eng. Chem. Process Des. Dev.
12
(
3
),
351
354
(
1973
).
32.
R. L.
Bates
,
P. L.
Fondy
, and
R. R.
Corpstein
, “
Examination of some geometric parameters of impeller power
,”
Ind. Eng. Chem. Process Des. Dev.
2
(
4
),
310
314
(
1963
).
33.
M.
Taghavi
,
R.
Zadghaffari
,
J.
Moghaddas
, and
Y.
Moghaddas
, “
Experimental and CFD investigation of power consumption in a dual Rushton turbine stirred tank
,”
Chem. Eng. Res. Des.
89
(
3
),
280
290
(
2011
).
34.
T. T.
Devi
and
B.
Kumar
, “
Mass transfer and power characteristics of stirred tank with Rushton and curved blade impeller
,”
Eng. Sci. Technol. Int. J.
20
(
2
),
730
737
(
2017
).
35.
M.
Martín
,
F. J.
Montes
, and
M. A.
Galán
, “
Influence of impeller type on the bubble breakup process in stirred tanks
,”
Ind. Eng. Chem. Res.
47
(
16
),
6251
6263
(
2008
).
36.
G.
Cocconi
,
E.
De Angelis
,
B.
Frohnapfel
,
M.
Baevsky
, and
A.
Liberzon
, “
Small scale dynamics of a shearless turbulent/non-turbulent interface in dilute polymer solutions
,”
Phys. Fluids
29
(
7
),
075102
(
2017
).
37.
O.
Bentata
,
D.
Anne-Archard
, and
P.
Brancher
, “
Experimental study of low inertia vortex rings in shear-thinning fluids
,”
Phys. Fluids
30
(
11
),
113103
(
2018
).
38.
A.
Esmaeili
,
C.
Guy
, and
J.
Chaouki
, “
The effects of liquid phase rheology on the hydrodynamics of a gas-liquid bubble column reactor
,”
Chem. Eng. Sci.
129
,
193
207
(
2015
).
39.
J. C.
Gabelle
,
F.
Augier
,
A.
Carvalho
,
R.
Rousset
, and
J.
Morchain
, “
Effect of tank size on kLa and mixing time in aerated stirred reactors with non-newtonian fluids
,”
Can. J. Chem. Eng.
89
(
5
),
1139
1153
(
2011
).
40.
Y.
Kawase
and
M.
Moo-Young
, “
The effect of antifoam agents on mass transfer in bioreactors
,”
Bioprocess. Eng.
5
(
4
),
169
173
(
1990
).
41.
H.
Chaumat
,
A. M.
Billet
, and
H.
Delmas
, “
Hydrodynamics and mass transfer in bubble column: Influence of liquid phase surface tension
,”
Chem. Eng. Sci.
62
(
24
),
7378
7390
(
2007
).
42.
P.
Rollbusch
,
M.
Becker
,
M.
Ludwig
 et al., “
Experimental investigation of the influence of column scale, gas density and liquid properties on gas holdup in bubble columns
,”
Int. J. Multiphase Flow
75
,
88
106
(
2015
).
43.
K.
Akita
and
F.
Yoshida
, “
Bubble size, interfacial area, and liquid-phase mass transfer coefficient in bubble columns
,”
Ind. Eng. Chem. Process Des. Dev.
13
(
1
),
84
91
(
1974
).
44.
R.
Higbie
, “
The rate of absorption of pure gas into a still liquid during short periods of exposure
,”
Trans. Am. Inst. Chem. Eng.
31
(
1
),
365
389
(
1935
).
45.
J. C.
Lamont
and
D. S.
Scott
, “
An eddy cell model of mass transfer into the surface of a turbulent liquid
,”
AIChE J.
16
(
4
),
513
519
(
1970
).
46.
Y.
Kawase
,
B.
Halard
, and
M.
Moo‐Young
, “
Liquid‐phase mass transfer coefficients in bioreactors
,”
Biotechnol. Bioeng.
39
(
11
),
1133
1140
(
1992
).
47.
C. S.
Ho
,
L.‐K.
Ju
, and
R. F.
Baddour
, “
The anomaly of oxygen diffusion in aqueous xanthan solutions
,”
Biotechnol. Bioeng.
32
(
1
),
8
17
(
1988
).
48.
J. E.
Evanoff
and
W. E.
Harris
, “
Diffusion coefficients and viscosities in glycol and glycerol solutions
,”
Can. J. Chem.
56
(
4
),
574
577
(
1978
).
49.
L.
Niño
,
R.
Gelves
,
H.
Ali
,
J.
Solsvik
, and
H.
Jakobsen
, “
Applicability of a modified breakage and coalescence model based on the complete turbulence spectrum concept for CFD simulation of gas-liquid mass transfer in a stirred tank reactor
,”
Chem. Eng. Sci.
211
,
115272
(
2020
).
You do not currently have access to this content.