Two colloidal suspensions of paucidisperse, spherical silica particles with different surface chemistries leading to extreme limits of surface contact friction are studied to identify experimental differences in shear rheology and microstructure and quantitatively test theory and simulation models. The nonequilibrium microstructure in the plane of shear is measured by flow-small angle neutron scattering for steady shear states spanning the shear thinning and shear thickening regimes. The shear rheology and microstructure are compared against predictions from theory for Brownian hard sphere suspensions and state-of-the-art simulation methods that incorporate either contact friction or enhanced lubrication hydrodynamics. The first normal stress differences are confirmed to distinguish between these micromechanical mechanisms for stress enhancement in the shear thickened regime. The nonequilibrium microstructure in the plane of shear shows more anisotropy for the suspension with higher interparticle friction. A significant fourfold symmetry is confirmed and found to be amplified with increasing surface contact friction in the shear thickened state. The differences in shear-induced microstructures between suspensions with varying contact friction demonstrate that the nonequilibrium microstructure can distinguish between nanotribological interactions in the shear thickened state. Statistical comparison of experiments with simulations indicates that better resolution of microstructures in simulation models is required to be validated by the experimental data presented. Implications for the development of theories for colloidal suspension rheology are discussed.

1.
N. J.
Wagner
, in
Theory and Applications of Colloidal Suspension Rheology
, edited by
N. J.
Wagner
and
J.
Mewis
(
Cambridge University Press
,
Cambridge, UK
,
2021
), p.
155
.
2.
J.
Mewis
and
N. J.
Wagner
,
Colloidal Suspension Rheology
, Cambridge Series in Chemical Engineering (
Cambridge University Press
,
Cambridge, New York
,
2012
).
3.
N. J.
Wagner
and
J. F.
Brady
,
Phys. Today
62
(
10
),
27
(
2009
).
4.
N. J.
Wagner
and
J. W.
Bender
,
MRS Bull.
29
,
100
(
2004
).
5.
C. P.
Hsu
,
S. N.
Ramakrishna
,
M.
Zanini
,
N. D.
Spencer
, and
L.
Isa
,
Proc. Natl. Acad. Sci. U. S. A.
115
,
5117
(
2018
).
6.
N.
Fernandez
,
J.
Cayer-Barrioz
,
L.
Isa
, and
N. D.
Spencer
,
Langmuir
31
,
8809
(
2015
).
7.
A. K.
Gurnon
,
P. D.
Godfrin
,
N. J.
Wagner
,
A. P.
Eberle
,
P.
Butler
, and
L.
Porcar
,
JoVE
84
,
e51068
(
2014
).
8.
J.
Bergenholtz
,
J. F.
Brady
, and
M.
Vicic
,
J. Fluid Mech.
456
,
239
(
2002
).
9.
J. F.
Morris
,
Annu. Rev. Fluid Mech.
52
,
121
(
2020
).
10.
D. R.
Foss
and
J. F.
Brady
,
J. Fluid Mech.
407
,
167
(
2000
).
11.
M.
Wang
,
S.
Jamali
, and
J. F.
Brady
,
J. Rheol.
64
,
379
(
2020
).
12.
S.
Jamali
,
A.
Boromand
,
N.
Wagner
, and
J.
Maia
,
J. Rheol.
59
,
1377
(
2015
).
13.
A.
Boromand
,
S.
Jamali
,
B.
Grove
, and
J. M.
Maia
,
J. Rheol.
62
,
905
(
2018
).
14.
R.
Mari
,
R.
Seto
,
J. F.
Morris
, and
M. M.
Denn
,
J. Rheol.
58
,
1693
(
2014
).
15.
R.
Seto
,
R.
Mari
,
J. F.
Morris
, and
M. M.
Denn
,
Phys. Rev. Lett.
111
,
218301
(
2013
).
16.
M.
Wyart
and
M. E.
Cates
,
Phys. Rev. Lett.
112
,
098302
(
2014
).
17.
R.
More
and
A.
Ardekani
,
J. Rheol.
64
,
1107
(
2020
).
18.
A.
Singh
,
R.
Mari
,
M. M.
Denn
, and
J. F.
Morris
,
J. Rheol.
62
,
457
(
2018
).
19.
S.
Jamali
and
J. F.
Brady
,
Phys. Rev. Lett.
123
,
138002
(
2019
).
20.
E.
Brown
and
H. M.
Jaeger
,
Rep. Prog. Phys.
77
,
046602
(
2014
).
21.
A. B.
Metzner
and
M.
Whitlock
,
Trans. Soc. Rheol.
2
,
239
(
1958
).
22.
H. M.
Laun
,
R.
Bung
, and
F.
Schmidt
,
J. Rheol.
35
,
999
(
1991
).
23.
J. R.
Royer
,
D. L.
Blair
, and
S. D.
Hudson
,
Phys. Rev. Lett.
116
,
188301
(
2016
).
24.
C. D.
Cwalina
and
N. J.
Wagner
,
J. Rheol.
58
,
949
(
2014
).
25.
Y.-F.
Lee
,
Y.
Luo
,
S. C.
Brown
, and
N. J.
Wagner
,
J. Rheol.
64
,
267
(
2020
).
26.
J.
Mewis
,
N. J.
Wagner
,
J.
Richards
,
N.
Roussel
, and
P.
Scales
, in
Theory and Applications of Colloidal Suspension Rheology
, edited by
N. J.
Wagner
and
J.
Mewis
(
Cambridge University Press
,
Cambridge, UK
,
2021
), p.
352
.
27.
Y. S.
Lee
,
E. D.
Wetzel
, and
N. J.
Wagner
,
J. Mater. Sci.
38
,
2825
(
2003
).
28.
See https://www.reebok.com/us/puremove_bra for “
PureMove Motionsense
.”
29.
F.
Toussaint
,
C.
Roy
, and
P.-H.
Jézéquel
,
Rheol. Acta
48
,
883
(
2009
).
30.
M. J.
Decker
,
C. J.
Halbach
,
C. H.
Nam
,
N. J.
Wagner
, and
E. D.
Wetzel
,
Compos. Sci. Technol.
67
,
565
(
2007
).
31.
C. D.
Cwalina
,
R. D.
Dombrowski
,
C. J.
McCutcheon
,
E. L.
Christiansen
, and
N. J.
Wagner
, in
Proceedings of the 2015 Hypervelocity Impact Symposium
, edited by
W. P.
Schonberg
(
2015
), p.
97
.
32.
C. D.
Cwalina
,
C. M.
McCutcheon
,
R. D.
Dombrowski
, and
N. J.
Wagner
,
Compos. Sci. Technol.
131
,
61
(
2016
).
33.
J. F.
Brady
, “
Non-linear mechanics and rheology of dense suspensions; Nanoscale structure to macroscopic behavior
,” in
KITP Conference
(
2018
).
34.
P. A.
Cundall
and
O. D. L.
Strack
,
Géotechnique
29
,
47
(
1979
).
35.
M.
Wang
and
J. F.
Brady
,
Phys. Rev. Lett.
115
,
158301
(
2015
).
36.
E. D.
Gado
and
J. F.
Morris
,
J. Rheol.
64
,
223
(
2020
).
37.
I. E.
Zarraga
and
D. T.
Leighton
,
Phys. Fluids
13
,
565
(
2001
).
38.
R.
Seto
and
G. G.
Giusteri
,
J. Fluid Mech.
857
,
200
(
2018
).
39.
A. K.
Gurnon
and
N. J.
Wagner
,
J. Fluid Mech.
769
,
242
(
2015
).
40.
X.
Cheng
,
J. H.
McCoy
,
J. N.
Israelachvili
, and
I.
Cohen
,
Science
333
,
1276
(
2011
).
41.
R.
Hoffman
,
J. Colloid Interface Sci.
46
,
491
(
1974
).
42.
D. P.
Kalman
and
N. J.
Wagner
,
Rheol. Acta
48
,
897
(
2009
).
43.
J.
Bender
and
N. J.
Wagner
,
J. Rheol.
40
,
899
(
1996
).
44.
B. J.
Maranzano
and
N. J.
Wagner
,
J. Chem. Phys.
117
,
10291
(
2002
).
45.
H.
Laun
 et al.,
J. Rheol.
36
,
743
(
1992
).
46.
G.
Bossis
and
J.
Brady
,
J. Chem. Phys.
91
,
1866
(
1989
).
47.
J. W.
Bender
and
N. J.
Wagner
,
J. Colloid Interface Sci.
172
,
171
(
1995
).
48.
P.
D'Haene
,
J.
Mewis
, and
G. G.
Fuller
,
J. Colloid Interface Sci.
156
,
350
(
1993
).
49.
L.
Porcar
,
D.
Pozzo
,
G.
Langenbucher
,
J.
Moyer
, and
P. D.
Butler
,
Rev. Sci. Instrum.
82
,
083902
(
2011
).
50.
M. W.
Liberatore
,
F.
Nettesheim
,
N. J.
Wagner
, and
L.
Porcar
,
Phys. Rev. E
73
,
020504
(
2006
).
51.
W.
Stöber
,
A.
Fink
, and
E.
Bohn
,
J. Colloid Interface Sci.
26
,
62
(
1968
).
52.
L.
Feigin
and
D. I.
Svergun
,
Structure Analysis by Small-Angle X-Ray and Neutron Scattering
(
Springer
,
1987
), Vol.
1
.
53.
D. P.
Kalman
,
Microstructure and Rheology of Concentrated Suspensions of Near Hard-Sphere Colloids
(
University of Delaware
,
2010
), Vol.
71
, p.
11
.
54.
W. B.
Russel
,
N. J.
Wagner
, and
J.
Mewis
,
J. Rheol.
57
,
1555
(
2013
).
55.
S. R.
Kline
,
J. Appl. Crystallogr.
39
,
895
(
2006
).
56.
M. M.
Ahmed
,
Int. J. Miner. Process.
94
,
180
(
2010
).
57.
L. C.
Hsiao
and
S.
Pradeep
,
Curr. Opin. Colloid Interface Sci.
43
,
94
112
(
2019
).
58.
D.
Lootens
,
H.
van Damme
,
Y.
Hemar
, and
P.
Hebraud
,
Phys. Rev. Lett.
95
,
268302
(
2005
).
59.
C.
De Kruif
,
E.
Van Iersel
,
A.
Vrij
, and
W.
Russel
,
J. Chem. Phys.
83
,
4717
(
1985
).
60.
R. A.
Lionberger
and
W.
Russel
,
Adv. Chem. Phys.
111
,
399
(
2000
).
61.
N. J.
Wagner
and
B. J.
Ackerson
,
J. Chem. Phys.
97
,
1473
(
1992
).
62.
J.
Vermant
and
M. J.
Solomon
,
J. Phys.
17
,
R187
(
2005
).
63.
S. R.
Rastogi
,
N. J.
Wagner
, and
S. R.
Lustig
,
J. Chem. Phys.
104
,
9234
(
1996
).
64.
E.
Nazockdast
and
J. F.
Morris
,
Phys. Fluids
25
,
070601
(
2013
).
65.
S. R.
Rastogi
and
N. J.
Wagner
,
Comput. Chem. Eng.
19
,
693
(
1995
).
66.
P. R.
Bevington
and
D. K.
Robinson
,
Data Reduction and Error Analysis for the Physical Sciences
, 3rd ed. (
McGraw-Hill
,
Boston
,
2003
).
67.
S. D.
Kulkarni
and
J. F.
Morris
,
J. Rheol.
53
,
417
(
2009
).
68.
J. E.
Thomas
,
A.
Goyal
,
D.
Singh Bedi
,
A.
Singh
,
E.
Del Gado
, and
B.
Chakraborty
,
J. Rheol.
64
,
329
(
2020
).

Supplementary Material

You do not currently have access to this content.