When sedimenting in a viscous fluid under gravity, a cloud of particles undergoes a complex shape evolution due to the hydrodynamic interactions. In this work, Lagrange particle dynamic simulation, which combines the Oseen solution for flow around a particle and a Gauss–Seidel iterative procedure, is adopted to investigate the effects of the particle inertia and the hydrodynamic interactions on the cloud's sedimentation behavior. It is found that, with a small Stokes number (St), the cloud evolves into a torus and then breaks up into secondary clouds. In contrast, the cloud with a finite Stokes number becomes compact in the horizontal direction and is elongated along the vertical direction. The critical St value that separates the breakup mode and the vertical elongation mode is around 0.2. The cloud response time (t̂r) and the maximum settling velocity (V̂max) are measured at different Stokes numbers, particle Reynolds numbers, and particle volume fractions. A linear relationship, t̂r=aSt, is found between t̂r and the Stokes number and the correlation between V̂max and St can be well described by an exponential function V̂max=b1expb2St+b3. At last, the chaotic dynamics of the sedimentation system are discussed. A small difference between the initial configurations diverges exponentially. The sedimentation system containing particles with larger inertia has a lower divergence rate.

1.
Ayala
,
O.
,
Grabowski
,
W. W.
, and
Wang
,
L. P.
, “
A hybrid approach for simulating turbulent collisions of hydrodynamically-interacting particles
,”
J. Comput. Phys.
225
,
51
73
(
2007
).
2.
Balachandar
,
S.
, and
Eaton
,
J. K.
, “
Turbulent dispersed multiphase flow
,”
Annu. Rev. Fluid Mech.
42
,
111
133
(
2010
).
3.
Bosse
,
T.
,
Kleiser
,
L.
,
Härtel
,
C.
, and
Meiburg
,
E.
, “
Numerical simulation of finite Reynolds number suspension drops settling under gravity
,”
Phys. Fluids
17
,
037101
(
2005
).
4.
Brady
,
J. F.
, and
Bossis
,
G.
, “
Stokesian dynamics
,”
Annu. Rev. Fluid Mech.
20
(
1
),
111
157
(
1988
).
5.
Chao
,
C. Y. H.
,
Wan
,
M. P.
,
Morawska
,
L.
,
Johnson
,
G. R.
,
Ristovski
,
Z. D.
,
Hargreaves
,
M.
,
Mengersen
,
K.
,
Corbett
,
S.
,
Li
,
Y.
,
Xie
,
X.
, and
Katoshevski
,
D.
, “
Characterization of expiration air jets and droplet size distributions immediately at the mouth opening
,”
J. Aerosol Sci.
40
(
2
),
122
133
(
2009
).
6.
Chavez-Valdez
,
A.
,
Shaffer
,
M. S.
, and
Boccaccini
,
A. R.
, “
Applications of graphene electrophoretic deposition. A review
,”
J. Phys. Chem. B
117
(
6
),
1502
1515
(
2013
).
7.
Chen
,
S.
, and
Li
,
S.
, “
Evolution of clouds of migrating micro-particles with hydrodynamic and electrostatic interactions
,”
EPJ Web Conf.
140
,
09004
(
2017
).
8.
Chen
,
S.
,
Liu
W.
, and
Li
,
S.
Scaling laws for migrating cloud of low-Reynolds-number particles with Coulomb repulsion
,”
J. Fluid Mech.
835
,
880
(
2018
).
9.
Chen
,
S.
,
Li
,
S.
, and
Marshall
,
J. S.
, “
Exponential scaling in early-stage agglomeration of adhesive particles in turbulence
,”
Phys. Rev. Fluids
4
(
2
),
024304
(
2019
).
10.
Chraibi
,
H.
, and
Amarouchene
,
Y.
, “
Sedimentation of granular columns in the viscous and weakly inertial regimes
,”
Phys. Rev. E
88
,
042204
(
2013
).
11.
Cordelair
,
J.
, and
Greil
,
P.
, “
Discrete element modeling of solid formation during electrophoretic deposition
,”
J. Mater. Sci.
39
(
3
),
1017
1021
(
2004
).
12.
Dickerson
,
J. H.
, and
Boccaccini
,
A. R.
,
Electrophoretic Deposition of Nanomaterials
(
Springer Science & Business Media
,
2011
).
13.
Dbouk
,
T.
, and
Drikakis
,
D.
On coughing and airborne droplet transmission to humans
,”
Phys. Fluids
32
,
053310
(
2020
).
14.
Ekiel-Jeżewska
,
M. L.
,
Metzger
,
B.
, and
Guazzelli
,
E.
, “
Spherical cloud of point particles falling in a viscous fluid
,”
Phys. Fluids
18
,
038104
(
2006
).
15.
Faletra
,
M.
,
Marshall
,
J. S.
,
Yang
,
M.
, and
Li
,
S.
, “
Particle segregation in falling polydisperse suspension droplets
,”
J. Fluid Mech.
769
,
79
(
2015
).
16.
Falkovich
,
G.
,
Fouxon
,
A.
, and
Stepanov
,
M. G.
, “
Acceleration of rain initiation by cloud turbulence
,”
Nature
419
(
6903
),
151
154
(
2002
).
17.
Guazzelli
,
E.
, and
Morris
,
J. F.
,
A Physical Introduction to Suspension Dynamics
(
Cambridge University Press
,
2012
).
18.
Habte
,
M. A.
, and
Wu
,
C.
, “
Particle sedimentation using hybrid Lattice Boltzmann-immersed boundary method scheme
,”
Powder Technol.
315
,
486
498
(
2017
).
19.
Ho
,
T. X.
,
Phan-Thien
,
N.
, and
Khoo
,
B. C.
, “
Destabilization of clouds of monodisperse and polydisperse particles falling in a quiescent and viscous fluid
,”
Phys. Fluids
28
,
063305
(
2016
).
20.
Hofmann
,
W.
,
Morawska
,
L.
, and
Bergmann
,
R.
, “
Environmental tobacco smoke deposition in the human respiratory tract: Differences between experimental and theoretical approaches
,”
J. Aerosol Med.
14
(
3
),
317
326
(
2001
).
21.
Hu
,
J.
, and
Guo
,
Z.
, “
Effect of interaction between a particle cluster and a single particle on particle motion and distribution during sedimentation: A numerical study
,”
Phys. Fluids
31
,
033301
(
2019
).
22.
Jánosi
,
I. M.
,
Tél
,
T.
,
Wolf
,
D. E.
, and
Gallas
,
J. A.
, “
Chaotic particle dynamics in viscous flows: The three-particle Stokeslet problem
,”
Phys. Rev. E
56
(
3
),
2858
(
1997
).
23.
Jaworek
,
A.
,
Krupa
,
A.
, and
Czech
,
T.
, “
Modern electrostatic devices and methods for exhaust gas cleaning: A brief review
,”
J. Electrost.
65
(
3
),
133
155
(
2007
).
24.
Li
,
S.
, and
Marshall
,
J. S.
, “
Discrete element simulation of micro-particle deposition on a cylindrical fiber in an array
,”
J. Aerosol Sci.
38
(
10
),
1031
1046
(
2007
).
25.
Li
,
S.
,
Marshall
,
J. S.
,
Liu
,
G.
, and
Yao
,
Q.
, “
Adhesive particulate flow: The discrete-element method and its application in energy and environmental engineering
,”
Prog. Energy Combust. Sci.
37
(
6
),
633
668
(
2011
).
26.
Liu
,
W.
, and
Wu
,
C. Y.
, “
Migration and agglomeration of adhesive microparticle suspensions in a pressure‐driven duct flow
,”
AIChE J.
66
(
6
),
16974
(
2020
).
27.
Machu
,
G.
,
Meile
,
W.
,
Nitsche
,
L. C.
, and
Schaflinger
,
U. W. E.
, “
Coalescence, torus formation and breakup of sedimenting drops: Experiments and computer simulations
,”
J. Fluid Mech.
447
,
299
(
2001
).
28.
Marchetti
,
B.
,
Bergougnoux
,
L.
, and
Guazzelli
,
E.
, “
Falling clouds of particles in vortical flows
,”
J. Fluid Mech.
908
,
A30
(
2021
).
29.
Marshall
,
J. S
, “
Discrete-element modeling of particulate aerosol flows
,”
J. Comput. Phys.
228
,
1541
1561
(
2009
).
30.
Marshall
,
J. S.
, and
Li
,
S.
,
Adhesive Particle Flow
(
Cambridge University Press
,
2014
).
31.
Metzger
,
B.
,
Nicolas
,
M.
, and
Guazzelli
,
E.
, “
Falling clouds of particles in viscous fluids
,”
J. Fluid Mech.
580
,
283
(
2007
).
32.
Myłyk
,
A.
,
Meile
,
W.
,
Brenn
,
G.
, and
Ekiel-Jeżewska
,
M. L.
, “
Break-up of suspension drops settling under gravity in a viscous fluid close to a vertical wall
,”
Phys. Fluids
23
,
063302
(
2011
).
33.
Nitsche
,
J. M.
, and
Batchelor
,
G. K.
, “
Break-up of a falling drop containing dispersed particles
,”
J. Fluid Mech.
340
,
161
175
(
1997
).
34.
Onishi
,
R.
,
Takahashi
,
K.
, and
Vassilicos
,
J. C.
, “
An efficient parallel simulation of interacting inertial particles in homogeneous isotropic turbulence
,”
J. Comput. Phys.
242
,
809
827
(
2013
).
35.
Pendar
,
M. R.
, and
Páscoa
,
J. C.
Numerical modeling of the distribution of virus carrying saliva droplets during sneeze and cough
,”
Phys. Fluids
32
,
083305
(
2020
).
36.
Pignatel
,
F.
,
Nicolas
,
M.
, and
Guazzelli
,
E.
, “
A falling cloud of particles at a small but finite Reynolds number
,”
J. Fluid Mech.
671
,
34
51
(
2011
).
37.
Pumir
,
A.
, and
Wilkinson
,
M.
, “
Collisional aggregation due to turbulence
,”
Annu. Rev. Condens. Matter Phys.
7
,
141
170
(
2016
).
38.
Robinson
,
R. J.
, and
Yu
,
C. P.
, “
Deposition of cigarette smoke particles in the human respiratory tract
,”
Aerosol Sci. Technol.
34
,
202
215
(
2001
).
39.
Squires
,
K. D.
, and
Eaton
,
J. K.
, “
Preferential concentration of particles by turbulence
,”
Phys. Fluids A
3
(
5
),
1169
1178
(
1991
).
40.
Subramanian
,
G.
, and
Koch
,
D. L.
, “
Evolution of clusters of sedimenting low-Reynolds-number particles with Oseen interactions
,”
J. Fluid Mech.
603
,
63
100
(
2008
).
41.
Wang
,
L. P.
,
Ayala
,
O.
, and
Grabowski
,
W. W.
, “
Effects of aerodynamic interactions on the motion of heavy particles in a bidisperse suspension
,”
J. Turbul.
8
,
N25
(
2007
).
42.
Wei
,
M.
,
Zhang
,
Y.
,
Wu
,
X.
, and
Sun
,
L.
, “
A parametric study of graphite dust deposition on high-temperature gas-cooled reactor (HTGR) steam generator tube bundles
,”
Ann. Nucl. Energy
123
,
135
144
(
2019
).
43.
Wilkinson
,
M.
,
Mehlig
,
B.
, and
Bezuglyy
,
V.
, “
Caustic activation of rain showers
,”
Phys. Rev. Lett.
97
(
4
),
048501
(
2006
).
44.
Woods
,
A. W.
, “
Turbulent plumes in nature
,”
Annu. Rev. Fluid Mech.
42
,
391
412
(
2010
).
45.
Yang
,
M.
,
Li
,
S.
, and
Yao
,
Q.
, “
Mechanistic studies of initial deposition of fine adhesive particles on a fiber using discrete-element methods
,”
Powder Technol.
248
,
44
53
(
2013
).
46.
Yang
,
M.
,
Li
,
S.
, and
Marshall
,
J. S.
, “
Effects of long-range particle–particle hydrodynamic interaction on the settling of aerosol particle clouds
,”
J. Aerosol Sci.
90
,
154
160
(
2015
).
47.
Zhao
,
K.
,
Vowinckel
,
B.
,
Hsu
,
T. J.
,
Köllner
,
T.
,
Bai
,
B.
, and
Meiburg
,
E.
, “
An efficient cellular flow model for cohesive particle flocculation in turbulence
,”
J. Fluid Mech.
889
,
R3
(
2020
).
You do not currently have access to this content.