A mesoscopic method based on the lattice Boltzmann method for thermal–solutal incompressible non-Newtonian power-law fluids through porous media is introduced. The macroscopic equations of different representative element volume (REV) models of porous media are presented, and the equations of power-law fluids through porous media for various REV models reported. The general mesoscopic model for two- and three-dimensional cases are presented, and their derivations shown. To demonstrate the ability of the proposed method, natural convection and double-diffusive natural convection of Newtonian and power-law fluids in porous cavities are studied, and the results are validated against previous findings. Finally, double-diffusive natural convection in a porous cubic cavity filled with a non-Newtonian power-law fluid is simulated by the proposed method.

1.
K.
Vafai
,
Handbook of Porous Media
(
Marcel Dekker
,
New York
,
2005
).
2.
D. B.
Ingham
and
I.
Pop
,
Transport Phenomena in Porous Media
(
Elsevier
,
Amsterdam
,
1998
).
3.
D. A.
Nield
and
A.
Bejan
,
Convection in Porous Media
, 3th ed. (
Springer
,
2006
).
4.
Y.
Mahmoudi
,
K.
Hooman
, and
K.
Vafai
,
Convection Heat Transfer in Porous Media
(
CRC Press
,
2019
).
5.
P.
Forchheimer
, “
Wasserbewegung durch Boden
,”
Forsch. Ver. D. Ing.
45
,
1782
1788
(
1901
).
6.
S.
Whitaker
, “
The Forchheimer equation: A theoretical development
,”
Transp. Porous Media
25
,
27
61
(
1996
).
7.
H. C.
Brinkman
, “
A calculation of the viscous force extended by a flowing fluid on a dense swarm of particles
,”
J. Appl. Sci. Res.
Al
,
27
34
(
1947
).
8.
J. A.
Ochoa-Tapia
and
S.
Whitaker
, “
Momentum transfer at the boundary between a porous medium and a homogeneous fluid—I. Theoretical development
,”
Int. J. Heat Mass Transfer
38
,
2647
2655
(
1995
).
9.
T. S.
Lundgren
, “
Slow flow through stationary random beds and suspensions of spheres
,”
J. Fluid Mech.
51
,
273
299
(
1972
).
10.
J.
Rubinstein
, “
Effective equations for flow in random porous media with a large number of scales
,”
J. Fluid Mech.
170
,
379
383
(
1986
).
11.
L.
Durlofsky
and
J. F.
Brady
, “
Analysis of the Brinkman equation as a model for flow in porous media
,”
Phys. Fluids
30
,
3329
3341
(
1987
).
12.
K.
Vafai
and
C. L.
Tien
, “
Boundary and inertia effects on flow and heat transfer in porous media
,”
Int. J. Heat Mass Transfer
24
,
195
203
(
1981
).
13.
D. A.
Nield
, “
The limitations of the Brinkman–Forchheimer equation in modeling flow in a saturated porous medium and at an interface
,”
Int. J. Heat Fluid Flow
12
,
269
272
(
1991
).
14.
S.
Whitaker
, “
The equations of motion in porous media
,”
Chem. Eng. Sci.
21
,
291
300
(
1966
).
15.
S.
Whitaker
, “
Diffusion and dispersion in porous media
,”
AIChE J.
13
,
420
427
(
1967
).
16.
S.
Whitaker
, “
Advances in the theory of fluid motion in porous media
,”
Ind. Eng. Chem.
61
,
14
28
(
1969
).
17.
K.
Vafai
and
S. J.
Kim
, “
On the limitations of the Brinkman–Forchheimer-extended equation
,”
Int. J. Heat Fluid Flow
16
,
11
15
(
1995
).
18.
K.
Vafai
, “
Convection flow and heat transfer in variable-porosity media
,”
J. Fluid Mech.
147
,
233
259
(
1984
).
19.
G.
Lauriat
and
V.
Prasad
, “
Natural convection in a vertical porous cavity: a numerical study for Brinkman-extended Darcy formulation, natural convection in porous media
,”
J. Heat Transfer
56
,
13
23
(
1986
).
20.
C. T.
Hsu
and
P.
Cheng
, “
Thermal dispersion in a porous medium,” Int.
J. Heat Mass Transfer
33
,
1587
1597
(
1990
).
21.
P.
Nithiarasu
,
K. N.
Seetharamu
, and
T.
Sundararajan
, “
Natural convection heat transfer in a fluid saturated variable porosity medium
,”
Int. J. Heat Mass Transfer
40
,
3955
3967
(
1997
).
22.
P.
Nithiarasu
and
K.
Ravindran
, “
A new semi-implicit time stepping procedure for buoyancy driven flow in a fluid saturated porous medium
,”
Comput. Methods Appl. Mech. Eng.
165
,
147
154
(
1998
).
23.
D. B.
Ingham
,
I.
Pop
, and
P.
Cheng
, “
Combined free and forced convection in a porous medium between two vertical walls with viscous dissipation
,”
Transp. Porous Media
5
,
381
398
(
1990
).
24.
D. A.
Nield
, “
Resolution of a paradox involving viscous dissipation and nonlinear drag in porous medium
,”
Transp. Porous Media
41
,
349
357
(
2000
).
25.
A. K.
Al-Hadhrami
,
L.
Elliott
, and
D. B.
Ingham
, “
A new model for viscous dissipation across a range of permeability values
,”
Transp. Porous Media
53
,
117
122
(
2003
).
26.
S.
Chakraborty
, “
Dynamics of capillary flow of blood into a microfluidic channel
,”
Lab Chip
5
,
421
430
(
2005
).
27.
C.
Ancey
, “
Plasticity and geophysical flows: A review
,”
J. Non-Newtonian Fluid Mech.
142
,
4
35
(
2007
).
28.
M.
Iasiello
,
K.
Vafai
,
A.
Andreozzi
, and
N.
Bianco
, “
Low-density lipoprotein transport through an arterial wall under hyperthermia and hypertension conditions—An analytical solution
,”
J. Biomech.
49
,
193
204
(
2016
).
29.
K.
Khanafer
and
K.
Vafai
, “
The role of porous media in biomedical engineering as related to magnetic resonance imaging and drug delivery
,”
Heat Mass Transfer
42
,
939
953
(
2006
).
30.
A. A.
Osiptsov
, “
Fluid mechanics of hydraulic fracturing: A review
,”
J. Pet. Sci. Eng.
156
,
513
535
(
2017
).
31.
R.
Barati
and
J.-T.
Liang
, “
A review of fracturing fluid systems used for hydraulic fracturing of oil and gas wells
,”
J. Appl. Polym. Sci.
131
,
40735
(
2014
).
32.
T.
Sochi
, “
Non-Newtonian flow in porous media
,”
Polymer
51
,
5007
5023
(
2010
).
33.
R. B.
Bird
,
W. E.
Stewart
, and, and
E. N.
Lightfoot
,
Transport Phenomena
(
Wiley
,
New York
,
1960
).
34.
R. H.
Christopher
and
S.
Middleman
, “
Power-law flow through a packed tube
,”
Ind. Eng. Chem. Fundam.
4
,
422
426
(
1965
).
35.
J. G.
Savins
, “
Non-Newtonian flow through porous media
,”
Ind. Eng. Chem.
61
,
18
47
(
1969
).
36.
Z.
Kemblowski
and
M.
Michniewicz
, “
A new look at the laminar flow of power-law fluids through granular beds
,”
Rheol. Acta
18
,
730
739
(
1979
).
37.
H.
Pascal
, “
Non-steady flow of non-Newtonian fluids through a porous medium
,”
Int. J. Eng. Sci.
21
,
199
210
(
1983
).
38.
R. V.
Dharmadhikari
and
D. D.
Kale
, “
Flow of non-Newtonian fluids through porous media
,”
Chem. Eng. Sci.
40
,
527
529
(
1985
).
39.
B.
Amari
,
P.
Vasseur
, and
E.
Bilgen
, “
Natural convection of a non-Newtonian fluid in a horizontal porous layer
,”
Heat Mass Transfer
29
,
185
193
(
1994
).
40.
D.
Getachew
,
W. J.
Minkowycz
, and
D.
Poulikakos
, “
Natural convection in a porous cavity saturated with a non-Newtonian fluid
,”
J. Thermophys. Heat Transfer
10
,
640
651
(
1996
).
41.
J. R. A.
Pearson
and
P. M. J.
Tardy
, “
Models for flow of non-Newtonian and complex fluids through porous media
,”
J. Non-Newtonian Fluid Mech.
102
,
447
473
(
2002
).
42.
J.-L.
Auriault
,
P.
Royer
, and
C.
Geindreau
, “
Filtration law for power-law fluids in anisotropic porous media
,”
Int. J. Eng. Sci.
40
,
1151
1163
(
2002
).
43.
S.
Woudberg
,
J. P. D.
Plessis
, and
G. J. F.
Smit
, “
Non-Newtonian purely viscous flow through isotropic granular porous media
,”
Chem. Eng. Sci.
61
,
4299
4308
(
2006
).
44.
A.
Barletta
and
D. A.
Nield
, “
Linear instability of the horizontal through flow in a plane porous layer saturated by a power-law fluid
,”
Phys. Fluids
23
,
013102
(
2011
).
45.
L.
Alves
and
A.
Barletta
, “
Convective instability of the Darcy–Bénard problem with through flow in a porous layer saturated by a power-law fluid
,”
Int. J. Heat Mass Transfer
62
,
495
506
(
2013
).
46.
S.
Longo
,
V. D.
Federico
,
L.
Chiapponi
, and
R.
Archetti
, “
Experimental verification of power-law non-Newtonian axisymmetric porous gravity currents
,”
J. Fluid Mech.
731
,
R2
(
2013
).
47.
A.
Barletta
and
L.
Storesletten
, “
Linear instability of the vertical through flow in a horizontal porous layer saturated by a power-law fluid
,”
Int. J. Heat Mass Transfer
99
,
293
302
(
2016
).
48.
A. V.
Shenoy
, “
Darcy–Forchheimer natural, forced and mixed convection heat transfer in non-Newtonian power-law fluid-saturated porous media
,”
Transp. Porous Media
11
,
219
241
(
1993
).
49.
A. V.
Shenoy
, “
Non-Newtonian fluid heat transfer in porous media
,”
Adv. Heat Transfer
15
,
143
225
(
1994
).
50.
S.
Chen
and
G. D.
Doolen
, “
Lattice Boltzmann method for fluid flows
,”
Annu. Rev. Fluid Mech.
30
,
329
364
(
1998
).
51.
S.
Succi
,
The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond
(
Oxford University Press
,
2001
).
52.
A. A.
Mohamad
,
Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes
(
Springer
,
2011
).
53.
Z.
Chen
,
C.
Shu
,
L. M.
Yang
,
X.
Zhao
, and
N. Y.
Liu
, “
Immersed boundary-simplified thermal lattice Boltzmann method for incompressible thermal flows
,”
Phys. Fluids
32
,
013605
(
2020
).
54.
O.
Ilyin
, “
Gaussian lattice Boltzmann method and its applications to rarefied flows
,”
Phys. Fluids
32
,
012007
(
2020
).
55.
Q.
Li
,
Z.
Lu
,
D.
Zhou
,
X.
Niu
,
T.
Guo
, and
B.
Du
, “
Unified simplified multiphase lattice Boltzmann method for ferrofluid flows and its application
,”
Phys. Fluids
32
,
093302
(
2020
).
56.
Y.
Zong
,
C.
Zhang
,
H.
Liang
,
L.
Wang
, and
J.
Xu
, “
Modeling surfactant-laden droplet dynamics by lattice Boltzmann method
,”
Phys. Fluids
32
,
122105
(
2020
).
57.
G.
Farag
,
S.
Zhao
,
T.
Coratger
,
P.
Boivin
,
G.
Chiavassa
, and
P.
Sagaut
, “
A pressure-based regularized lattice-Boltzmann method for the simulation of compressible flows
,”
Phys. Fluids
32
,
066106
(
2020
).
58.
L.
Xu
,
X.
Yu
, and
K.
Regenauer-Lieb
, “
An immersed boundary-lattice Boltzmann method for gaseous slip flow
,”
Phys. Fluids
32
,
012002
(
2020
).
59.
Z.
Guo
,
B.
Shi
, and
N.
Wang
, “
Lattice BGK model for incompressible Navier–Stokes equation
,”
J. Comput. Phys.
165
,
288
306
(
2000
).
60.
F.
Verhaeghe
,
B.
Blanpain
, and
P.
Wollants
, “
Lattice Boltzmann method for double-diffusive natural convection
,”
Phys. Rev. E
75
,
046705
(
2007
).
61.
X.
Yu
,
Z.
Guo
, and
B.
Shi
, “
Numerical study of cross diffusion effects on double diffusive convection with lattice Boltzmann method
,” in
International Conference on Computational Science —ICCS
(
2007
), pp.
810
817
.
62.
Z.
Chai
and
T. S.
Zhao
, “
Lattice Boltzmann model for the convection-diffusion equation
,”
Phys. Rev. E
87
,
063309
(
2013
).
63.
A. A.
Mohamad
,
R.
Bennacer
, and
M.
El-Ganaoui
, “
Double dispersion, natural convection in an open end cavity simulation via lattice Boltzmann method
,”
Int. J. Therm. Sci.
49
,
1944
1953
(
2010
).
64.
Z.
Guo
and
T. S.
Zhao
, “
Lattice Boltzmann model for incompressible flows through porous media
,”
Phys. Rev. E
66
,
036304
(
2002
).
65.
Z.
Guo
and
T. S.
Zhao
, “
Lattice Boltzmann model for incompressible flows through porous media
,”
Numer. Heat Transfer B
47
,
157
177
(
2005
).
66.
Q.
Liu
,
Y.
He
,
Q.
Li
, and
W.
Tao
, “
A multiple-relaxation-time lattice Boltzmann model for convection heat transfer in porous media
,”
Int. J. Heat Mass Transfer
73
,
761
775
(
2014
).
67.
L.
Wanga
,
J.
Mi
, and
Z.
Guo
, “
A modified lattice Bhatnagar–Gross–Krook model for convection heat transfer in porous media
,”
Int. J. Heat Mass Transfer
94
,
269
291
(
2016
).
68.
D.
Gao
,
Z.
Chen
, and
L.
Chen
, “
A thermal lattice Boltzmann model for natural convection in porous media under local thermal non-equilibrium conditions
,”
Int. J. Heat Mass Transfer
70
,
979
989
(
2014
).
69.
D.
Gao
,
Z.
Chen
,
L.
Chen
, and
D.
Zhang
, “
A modified lattice Boltzmann model for conjugate heat transfer in porous media
,”
Int. J. Heat Mass Transfer
105
,
673
683
(
2017
).
70.
S.
Chen
,
B.
Yang
, and
C.
Zheng
, “
Simulation of double diffusive convection in fluid-saturated porous media by lattice Boltzmann method
,”
Int. J. Heat Mass Transfer
108
,
1501
1510
(
2017
).
71.
E. S.
Boek
,
J.
Chin
, and
P. V.
Coveney
, “
Lattice Boltzmann simulation of the flow of non-Newtonian fluids in porous media
,”
Int. J. Mod. Phys. B
17
,
99
102
(
2003
).
72.
S.
Gabbanelli
,
G.
Drazer
, and
J.
Koplik
, “
Lattice Boltzmann method for non-Newtonian (power-law) fluids
,”
Phys. Rev. E
72
,
046312
(
2005
).
73.
S. P.
Sullivan
,
L. F.
Gladden
, and
M. L.
Johns
, “
Simulation of power-law fluid flow through porous media using lattice Boltzmann techniques
,”
J. Non-Newtonian Fluid Mech.
133
,
91
98
(
2006
).
74.
J.
Boyd
,
J.
Buick
, and
S.
Green
, “
A second-order accurate lattice Boltzmann non- Newtonian flow model
,”
J. Phys. A: Math. Gen.
39
,
14241
14247
(
2006
).
75.
S. P.
Sullivan
,
A. J.
Sederman
,
M. L.
Johns
, and
L. F.
Gladden
, “
Verification of shearthinning LB simulations in complex geometries
,”
J. Non-Newtonian Fluid Mech.
143
,
59
63
(
2007
).
76.
J.
Psihogios
,
M. E.
Kainourgiakis
,
A. G.
Yiotis
,
A.
Papaioannou
, and
A. K.
Stubos
, “
A lattice Boltzmann study of non-Newtonian flow in digitally reconstructed porous domains
,”
Trans. Porous Media
70
,
279
292
(
2007
).
77.
L.
Velázquez-Ortega
and
S.
Rodríguez-Romo
, “
Local effective permeability distributions for non-Newtonian fluids by the lattice Boltzmann equation
,”
Chem. Eng. Sci.
64
,
2866
2880
(
2009
).
78.
X.
He
,
S.
Chen
, and
G. D.
Doolen
, “
A novel thermal model for the lattice Boltzmann method in incompressible limit
,”
J. Comput. Phys.
146
,
282
300
(
1998
).
79.
Y.
Shi
,
T. S.
Zhao
, and
Z. L.
Guo
, “
Thermal lattice Bhatangar–Gross–Krook model for flows with viscous heat dissipation in the incompressible limit
,”
Phys. Rev. E
70
,
066310
(
2004
).
80.
S. C.
Fu
,
W. W. F.
Leung
, and
R. M. C.
So
, “
A lattice Boltzmann method based numerical scheme for microchannel Flows
,”
J. Fluids Eng.
131
,
081401
(
2009
).
81.
S. C.
Fu
and
R. M. C.
So
, “
Modeled lattice Boltzmann equation and the constant-density assumption
,”
AIAA J.
47
,
3038
3042
(
2009
).
82.
S. C.
Fu
,
R. M. C.
So
, and
R. M. C.
Leung
, “
Linearized-Boltzmann-type-equation-based finite difference method for thermal incompressible flow
,”
Comput. Fluids
69
,
67
80
(
2012
).
83.
R. R.
Huilgol
and
G. H. R.
Kefayati
, “
From mesoscopic models to continuum mechanics: Newtonian and non-newtonian fluids
,”
J. Non Newtonian Fluid Mech.
233
,
146
154
(
2016
).
84.
R. R.
Huilgol
and
G. H. R.
Kefayati
, “
A particle distribution function approach to the equations of continuum mechanics in Cartesian, cylindrical and spherical coordinates: Newtonian and non-Newtonian fluids
,”
J. Non-Newtonian Fluid Mech.
251
,
119
131
(
2018
).
85.
G. R.
Kefayati
,
H.
Tang
,
A.
Chan
, and
X.
Wang
, “
A Lattice Boltzmann model for thermal non-Newtonian fluid flows through porous media
,”
Comput. Fluids
176
,
226
244
(
2018
).
86.
E. F.
Toro
,
Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction
(
Springer
,
1999
), pp.
531
542
.
87.
B.
Goyeau
,
J.-P.
Songbe
, and
D.
Gobin
, “
Numerical study of double-diffusive natural convection in a porous cavity using the Darcy–Brinkman formulation
,”
Int. J. Heat Mass Transfer
39
,
1363
1378
(
1996
).
88.
G.
Lauriat
and
V.
Prasad
, “
Non-Darcian effects on natural convection in a vertical porous enclosure, natural convection in porous media
,”
Int. J. Heat Mass Transfer.
32
,
2135
2148
(
1989
).
89.
D.
Das
,
P.
Biswal
,
M.
Roy
, and
T.
Basak
, “
Role of the importance of Forchheimer term for visualization of natural convection in porous enclosures of various shapes
,”
Int. J. Heat Mass Transfer
97
,
1044
1068
(
2016
).
90.
D.
Das
and
T.
Basak
, “
Role of discrete heating on the efficient thermal management within porous square and triangular enclosures via heatline approach
,”
Int. J. Heat Mass Transfer
112
,
489
508
(
2017
).
91.
I.
Sezai
and
A. A.
Mohamad
, “
Three-dimensional double-diffusive convection in a porous cubic enclosure due to opposing gradients of temperature and concentration
,”
J. Fluid Mech.
400
,
333
353
(
1999
).
92.
O.
Kvernvold
and
P.
Tyvand
, “
Thermal convection in anisotropic porous media
,”
J. Fluid Mech.
90
,
609
624
(
1979
).
93.
L.
Storesletten
, “
Natural convection in a horizontal porous layer with anisotropic thermal diffusivity
,”
Transp. Porous Media
12
,
19
29
(
1993
).
94.
W.
Bian
,
P.
Vasseur
, and
E.
Bilgen
, “
Boundary-layer analysis for natural convection in a vertical porous layer filled with a non-Newtonian fluid
,”
Int. J. Heat Fluid Flow
15
,
384
391
(
1994
).
95.
A.
Shenoy
,
Heat Transfer to non-Newtonian Fluids: Fundamentals and Analytical Expressions
(
John Wiley & Sons
,
2018
).
96.
P. V.
Brandao
,
M.
Celli
,
A.
Barletta
, and
L.
Storesletten
, “
Thermally unstable through flow of a power-law fluid in a vertical porous cylinder with arbitrary cross-section
,”
Int. J. Therm. Sci.
159
,
106616
(
2021
).
97.
C.
Chahtour
,
H.
Ben Hamed
,
H.
Beji
,
A.
Guizani
, and
W.
Alimi
, “
Convective hydromagnetic instabilities of a power-law liquid saturating a porous medium: Flux conditions
,”
Phys. Fluids
30
,
013101
(
2018
).
98.
N.
Khelifa
,
Z.
Alloui
,
H.
Beji
, and
P.
Vasseur
, “
Natural convection in a vertical porous cavity filled with a non-Newtonian binary fluid
,”
AIChE J.
58
,
1704
1716
(
2012
).
99.
N.
Khelifa
,
Z.
Alloui
,
H.
Beji
, and
P.
Vasseur
, “
Natural convection in a horizontal porous cavity filled with a non-Newtonian binary fluid of power-law type
,”
J. Non-Newtonian Fluid Mech.
169–170
,
15
25
(
2012
).
100.
G.
Kim
,
J.
Hyun
, and
H. S.
Kwak
, “
Transient buoyant convection of a power law Non-Newtonian fluid in an enclosure
,”
Int. J. Heat Mass Transfer
46
,
3605
3617
(
2003
).
101.
O.
Turan
,
A.
Sachdeva
,
R. J.
Poole
, and
N.
Chakraborty
, “
Laminar natural convection of power-law fluids in a square enclosure with differentially heated sidewalls subjected to constant wall heat flux
,”
J. Heat Transfer
134
,
122504
(
2012
).
102.
O.
Turan
,
A.
Sachdeva
,
N.
Chakraborty
, and
R. J.
Poole
, “
Laminar natural convection of power-law fluids in a square enclosure with differentially heated side walls subjected to constant Temperatures
,”
J. Non-Newtonian Fluid Mech.
166
,
1049
1063
(
2011
).
103.
C.
Sasmal
,
A. K.
Gupta
, and
R. P.
Chhabra
, “
Natural convection heat transfer in a power-law fluid from a heated rotating cylinder in a square duct
,”
Int. J. Heat Mass Transfer
129
,
975
996
(
2019
).
104.
A. K.
Tiwari
and
R. P.
Chhabra
, “
Laminar natural convection in power-law liquids from a heated semi-circular cylinder with its flat side oriented downward
,”
Int. J. Heat Mass Transfer
58
,
553
567
(
2013
).
105.
K.
Khanafer
,
A.
AlAmiri
, and
J.
Bull
, “
Laminar natural convection heat transfer in a differentially heated cavity with a thin porous fin attached to the hot wall
,”
Int. J. Heat Mass Transfer
87
,
59
70
(
2015
).
You do not currently have access to this content.