The interplay between flow and attractive interactions in colloidal gels results in complex particle trajectories and velocity profiles that are not evident from bulk rheological measurements. We use high-speed confocal microscopy to investigate the local velocity of a low volume fraction (ϕ = 0.20) thermogelling nanoemulsion system as it flows through a cylindrical capillary at temperatures below and above the gel point. The nanoemulsions are composed of poly(dimethyl siloxane) droplets in a continuous phase of sodium dodecyl sulfate, de-ionized water, and a gelator molecule, poly(ethylene glycol diacrylate). The trajectories of fluorescent polystyrene tracer beads in the oil-rich domains are tracked using two-dimensional image processing. While the velocity profiles agree with those computed from rheometry measurements for nanoemulsion suspensions below the gel point temperature, increasing attractive interactions above the gel point results in statistically significant deviations. Specifically, the velocity measurements indicate a higher yield stress and a larger degree of shear thinning than expected from bulk rheology measurements, resulting in a more plug-shaped velocity profile as temperature and associated interdroplet attraction increase. These deviations from theoretical predictions are likely due to structural heterogeneity. Confocal microscopy images show that small, fluidized clusters are found in high shear rate regions near the capillary walls, while large dense clusters form in low shear rate regions closer to the center of the capillary.

1.
P. J.
Lu
and
D. A.
Weitz
, “
Colloidal particles: Crystals, glasses, and gels
,”
Annu. Rev. Condens. Matter Phys.
4
,
217
(
2013
).
2.
J.
Rouwhorst
,
C.
Ness
,
S.
Stoyanov
,
A.
Zaccone
, and
P.
Schall
, “
Nonequilibrium continuous phase transition in colloidal gelation with short-range attraction
,”
Nat. Commun.
11
,
3558
(
2020
).
3.
F.
Khabaz
and
R. T.
Bonnecaze
, “
Thermodynamics of shear-induced phase transition of polydisperse soft particle glasses
,”
Phys. Fluids
33
,
013315
(
2021
).
4.
R.
Biswas
,
D.
Saha
, and
R.
Bandyopadhyay
, “
Quantifying the destructuring of a thixotropic colloidal suspension using falling ball viscometry
,”
Phys. Fluids
33
,
013103
(
2021
).
5.
S.
Sahoo
,
S. P.
Singh
, and
S.
Thakur
, “
Role of viscoelasticity on the dynamics and aggregation of chemically active sphere-dimers
,”
Phys. Fluids
33
,
017120
(
2021
).
6.
J. T.
Parley
,
S. M.
Fielding
, and
P.
Sollich
, “
Aging in a mean field elastoplastic model of amorphous solids
,”
Phys. Fluids
32
,
127104
(
2020
).
7.
Y.
Zhang
,
W.
Gao
,
Y.
Chen
,
T.
Escajadillo
,
J.
Ungerleider
,
R. H.
Fang
,
K.
Christman
,
V.
Nizet
, and
L.
Zhang
, “
Self-assembled colloidal gel using cell membrane-coated nanosponges as building blocks
,”
ACS Nano
11
,
11923
(
2017
).
8.
E.
Dickinson
, “
Colloids in food: Ingredients, structure, and stability
,”
Annu. Rev. Food Sci. Technol.
6
,
211
(
2015
).
9.
P.
Hainey
,
I. M.
Huxham
,
B.
Rowatt
,
D. C.
Sherrington
, and
L.
Tetley
, “
Synthesis and ultrastructural studies of styrene-divinylbenzene polyhipe polymers
,”
Macromolecules
24
,
117
(
1991
).
10.
J. A.
Lewis
, “
Colloidal processing of ceramics
,”
J. Am. Ceram. Soc.
83
,
2341
(
2004
).
11.
M. O.
Ogunyankin
,
S.
Deshmukh
,
M. E.
Krause
,
T.
Carvalho
,
M.
Huang
,
A.
Ilott
,
B.
Remy
, and
M.
Khossravi
, “
Small-scale tools to assess the impact of interfacial and shear stress on biologic drug products
,”
AAPS PharmSciTech
20
,
184
(
2019
).
12.
H.
Cho
,
U.
Jammalamadaka
, and
K.
Tappa
, “
Nanogels for pharmaceutical and biomedical applications and their fabrication using 3D printing technologies
,”
Materials
11
,
302
(
2018
).
13.
C. W.
Peak
,
J.
Stein
,
K. A.
Gold
, and
A. K.
Gaharwar
, “
Nanoengineered colloidal inks for 3D bioprinting
,”
Langmuir
34
,
917
(
2018
).
14.
E. D.
Cardenas-Vasquez
,
K. M.
Smith
,
T. J.
Doolan
, and
L. C.
Hsiao
, “
Shear-induced microstructural variations in nanoemulsion-laden organohydrogel fibers
,”
ACS Appl. Polym. Mater.
2
,
594
(
2020
).
15.
S.
Yan
,
J.
Ren
,
Y.
Jian
,
W.
Wang
,
W.
Yun
, and
J.
Yin
, “
Injectable maltodextrin-based micelle/hydrogel composites for simvastatin-controlled release
,”
Biomacromolecules
19
,
4554
(
2018
).
16.
D. R.
Griffin
,
W. M.
Weaver
,
P. O.
Scumpia
,
D. D.
Carlo
, and
T.
Segura
, “
Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks
,”
Nat. Mater.
14
,
737
(
2015
).
17.
H.
Guo
,
S.
Ramakrishnan
,
J. L.
Harden
, and
R. L.
Leheny
, “
Connecting nanoscale motion and rheology of gel-forming colloidal suspensions
,”
Phys. Rev. E
81
,
050401
(
2010
).
18.
A.
Goyal
,
K.
Ioannidou
,
C.
Tiede
,
P.
Levitz
,
R. J.-M.
Pellenq
, and
E. D.
Gado
, “
Heterogeneous surface growth and gelation of cement hydrates
,”
J. Phys. Chem. C
124
,
15500
(
2020
).
19.
H.
Tsurusawa
,
M.
Leocmach
,
J.
Russo
, and
H.
Tanaka
, “
Direct link between mechanical stability in gels and percolation of isostatic particles
,”
Sci. Adv.
5
,
eaav6090
(
2019
).
20.
L. C.
Hsiao
,
H.
Kang
,
K. H.
Ahn
, and
M. J.
Solomon
, “
Role of shear-induced dynamical heterogeneity in the nonlinear rheology of colloidal gels
,”
Soft Matter
10
,
9254
(
2014
).
21.
P.
Varadan
and
M. J.
Solomon
, “
Shear-induced microstructural evolution of thermoreversible colloidal gel
,”
Langmuir
17
,
2918
(
2001
).
22.
N.
Koumakis
,
E.
Moghimi
,
R.
Besseling
,
W. C. K.
Poon
,
J. F.
Brady
, and
G.
Petekidis
, “
Tuning colloidal gels by shear
,”
Soft Matter
11
,
4640
(
2015
).
23.
J. M.
van Doorn
,
J. E.
Verweij
,
J.
Sprakel
, and
J.
van der Gucht
, “
Strand plasticity governs fatigue in colloidal gels
,”
Phys. Rev. Lett.
120
,
208005
(
2018
).
24.
K. A.
Whitaker
,
Z.
Varga
,
L. C.
Hsiao
,
M. J.
Solomon
,
J. W.
Swan
, and
E. M.
Furst
, “
Colloidal gel elasticity arises from the packing of locally glassy clusters
,”
Nat. Commun.
10
,
2237
(
2019
).
25.
S.
Jamali
,
R. C.
Armstrong
, and
G. H.
McKinley
, “
Time-rate-transformation framework for targeted assembly of short-range attractive colloidal suspensions
,”
Mater. Today Adv.
5
,
100026
(
2020
).
26.
L. E.
Silbert
,
J. R.
Melrose
, and
R. C.
Ball
, “
The rheology and microstructure of concentrated, aggregated colloids
,”
J. Rheol.
43
,
673
(
1999
).
27.
J.
Vermant
and
M. J.
Solomon
, “
Flow-induced structure in colloidal suspensions
,”
J. Phys. Condens. Matter
17
,
187
(
2005
).
28.
L.-C.
Cheng
,
S. L.
Kuei Vehusheia
, and
P. S.
Doyle
, “
Tuning material properties of nanoemulsion gels by sequentially screening electrostatic repulsions and then thermally inducing droplet bridging
,”
Langmuir
36
,
3346
(
2020
).
29.
L. C.
Johnson
,
R. N.
Zia
,
E.
Moghimi
, and
G.
Petekidis
, “
Influence of structure on the linear response rheology of colloidal gels
,”
J. Rheol.
63
,
583
(
2019
).
30.
D. A.
Weitz
and
M.
Oliveria
, “
Fractal structures formed by kinetic aggregation of aqueous gold colloids
,”
Phys. Rev. Lett.
52
,
1433
(
1984
).
31.
Z.
Varga
,
G.
Wang
, and
J.
Swan
, “
The hydrodynamics of colloidal gelation
,”
Soft Matter
11
,
9009
(
2015
).
32.
L.
Cipelletti
,
S.
Manley
,
R. C.
Ball
, and
D. A.
Weitz
, “
Universal aging features in the restructuring of fractal colloidal gels
,”
Phys. Rev. Lett.
84
,
2275
(
2000
).
33.
R.
Massaro
,
G.
Colombo
,
P.
Van Puyvelde
, and
J.
Vermant
, “
Viscoelastic cluster densification in sheared colloidal gels
,”
Soft Matter
16
,
2437
(
2020
).
34.
H. K.
Chan
and
A.
Mohraz
, “
Two-step yielding and directional strain-induced strengthening in dilute colloidal gels
,”
Phys. Rev. E
85
,
041403
(
2012
).
35.
J. D.
Park
,
K. H.
Ahn
, and
S. J.
Lee
, “
Structural change and dynamics of colloidal gels under oscillatory shear flow
,”
Soft Matter
11
,
9262
(
2015
).
36.
L. C.
Hsiao
,
R. S.
Newman
,
S. C.
Glotzer
, and
M. J.
Solomon
, “
Role of isostaticity and load-bearing microstructure in the elasticity of yielded colloidal gels
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
16029
(
2012
).
37.
M.
Tripathy
and
K. S.
Schweizer
, “
Activated dynamics in dense fluids of attractive nonspherical particles. II. Elasticity, barriers, relaxation, fragility, and self-diffusion
,”
Phys. Rev. E
83
,
041407
(
2011
).
38.
J.
Ruiz-Franco
,
F.
Camerin
,
N.
Gnan
, and
E.
Zaccarelli
, “
Tuning the rheological behavior of colloidal gels through competing interactions
,”
Phys. Rev. Mater.
4
,
045601
(
2020
).
39.
B.
Rajaram
and
A.
Mohraz
, “
Microstructural response of dilute colloidal gels to nonlinear shear deformation
,”
Soft Matter
6
,
2246
(
2010
).
40.
S.
Jamali
,
G. H.
McKinley
, and
R. C.
Armstrong
, “
Microstructural rearrangements and their rheological implications in a model thixotropic elastoviscoplastic fluid
,”
Phys. Rev. Lett.
118
,
048003
(
2017
).
41.
B. J.
Landrum
,
W. B.
Russel
, and
R. N.
Zia
, “
Delayed yield in colloidal gels: Creep, flow, and re-entrant solid regimes
,”
J. Rheol.
60
,
783
(
2016
).
42.
D.
Bonn
,
M. M.
Denn
,
L.
Berthier
,
T.
Divoux
, and
S.
Manneville
, “
Yield stress materials in soft condensed matter
,”
Rev. Mod. Phys.
89
,
035005
(
2017
).
43.
H.
Chen
,
M. A.
Fallah
,
V.
Huck
,
J. I.
Angerer
,
A. J.
Reininger
,
S. W.
Schneider
,
M. F.
Schneider
, and
A.
Alexander-Katz
, “
Blood-clotting-inspired reversible polymer–colloid composite assembly in flow
,”
Nat. Commun.
4
,
1333
(
2013
).
44.
M. T.
Roberts
,
A.
Mohraz
,
K. T.
Christensen
, and
J. A.
Lewis
, “
Direct flow visualization of colloidal gels in microfluidic channels
,”
Langmuir
23
,
8726
(
2007
).
45.
J. C.
Conrad
and
J. A.
Lewis
, “
Structure of colloidal gels during microchannel flow
,”
Langmuir
24
,
7628
(
2008
).
46.
Z.
Varga
,
J. L.
Hofmann
, and
J. W.
Swan
, “
Modelling a hydrodynamic instability in freely settling colloidal gels
,”
J. Fluid Mech.
856
,
1014
(
2018
).
47.
Z.
Varga
,
V.
Grenard
,
S.
Pecorario
,
N.
Taberlet
,
V.
Dolique
,
S.
Manneville
,
T.
Divoux
,
G. H.
McKinley
, and
J. W.
Swan
, “
Hydrodynamics control shear-induced pattern formation in attractive suspensions
,”
Proc. Natl. Acad. Sci.
116
,
12193
(
2019
).
48.
V.
Grenard
,
N.
Taberlet
, and
S.
Manneville
, “
Shear-induced structuration of confined carbon black gels: Steady-state features of vorticity-aligned flocs
,”
Soft Matter
7
,
3920
(
2011
).
49.
M.
Han
,
J. K.
Whitmer
, and
E.
Luijten
, “
Dynamics and structure of colloidal aggregates under microchannel flow
,”
Soft Matter
15
,
744
(
2019
).
50.
M. E.
Helgeson
,
Y.
Gao
,
S. E.
Moran
,
J.
Lee
,
M.
Godfrin
,
A.
Tripathi
,
A.
Bose
, and
P. S.
Doyle
, “
Homogeneous percolation versus arrested phase separation in attractively-driven nanoemulsion colloidal gels
,”
Soft Matter
10
,
3122
(
2014
).
51.
M. E.
Helgeson
,
S. E.
Moran
,
H. Z.
An
, and
P. S.
Doyle
, “
Mesoporous organohydrogels from thermogelling photocrosslinkable nanoemulsions
,”
Nat. Mater.
11
,
344
(
2012
).
52.
L. C.
Cheng
,
L. C.
Hsiao
, and
P. S.
Doyle
, “
Multiple particle tracking study of thermally-gelling nanoemulsions
,”
Soft Matter
13
,
6606
(
2017
).
53.
L. C.
Hsiao
and
P. S.
Doyle
, “
Celebrating Soft Matter's 10th Anniversary: Sequential phase transitions in thermoresponsive nanoemulsions
,”
Soft Matter
11
,
8426
(
2015
).
54.
B.
Geraud
,
L.
Bocquet
, and
C.
Barentin
, “
Confined flows of a polymer microgel
,”
Eur. Phys. J. E
36
,
30
(
2013
).
55.
K. N.
Nordstrom
,
E.
Verneuil
,
P. E.
Arratia
,
A.
Basu
,
Z.
Zhang
,
A. G.
Yodh
,
J. P.
Gollub
, and
D. J.
Durian
, “
Microfluidic rheology of soft colloids above and below jamming
,”
Phys. Rev. Lett.
105
,
175701
(
2010
).
56.
L.
Kass
,
E. D.
Cardenas‐Vasquez
, and
L. C.
Hsiao
, “
Composite double network hydrogels with thermoresponsive colloidal nanoemulsions
,”
AIChE J.
65
,
e16817
(
2019
).
57.
J. C.
Crocker
and
D. G.
Grier
, “
Methods of digital video microscopy for colloidal studies
,”
J. Colloid Interface Sci.
179
,
298
(
1996
).
58.
R.
Wessel
and
R. C.
Ball
, “
Fractal aggregates and gels in shear flow
,”
Phys. Rev. A
46
,
R3008
(
1992
).
59.
C. J.
Rueb
and
C. F.
Zukoski
, “
Viscoelastic properties of colloidal gels
,”
J. Rheol.
41
,
197
(
1997
).
60.
R. B.
Bird
,
W. E.
Stewart
, and
E. N.
Lightfoot
,
Transport Phenomena
(
John Wiley and Sons, Inc.
,
New York
,
1960
).
61.
Y.
Liu
and
J. R.
de Bruyn
, “
Start-up flow of a yield-stress fluid in a vertical pipe
,”
J. Non-Newtonian Fluid Mech.
257
,
50
(
2018
).
62.
C. B.
Burroughs
,
R. W.
Fischer
, and
F. R.
Kern
, “
An introduction to statistical energy analysis
,”
J. Acoust. Soc. Am.
101
,
1779
(
1997
).
63.
J.
Goyon
,
A.
Colin
,
G.
Ovarlez
,
A.
Ajdari
, and
L.
Bocquet
, “
Spatial cooperativity in soft glassy flows
,”
Nature
454
,
84
(
2008
).
64.
J.
Brady
, “
Stokesian dynamics
,”
Annu. Rev. Fluid Mech.
20
,
111
(
1988
).
65.
S.
Bhagavathi Kandy
,
I.
Mehdipour
,
N.
Neithalath
,
M.
Bauchy
,
E.
Garboczi
,
S.
Srivastava
,
T.
Gaedt
, and
G.
Sant
, “
Temperature-induced aggregation in portlandite suspensions
,”
Langmuir
36
,
10811
(
2020
).
66.
A.
Wysocki
,
C. P.
Royall
,
R. G.
Winkler
,
G.
Gompper
,
H.
Tanaka
,
A.
Van Blaaderen
, and
H.
Löwen
, “
Direct observation of hydrodynamic instabilities in a driven non-uniform colloidal dispersion
,”
Soft Matter
5
,
1340
(
2009
).
67.
Z.
Jabeen
,
H. Y.
Yu
,
D. M.
Eckmann
,
P. S.
Ayyaswamy
, and
R.
Radhakrishnan
, “
Rheology of colloidal suspensions in confined flow: Treatment of hydrodynamic interactions in particle-based simulations inspired by dynamical density functional theory
,”
Phys. Rev. E
98
,
042602
(
2018
).
68.
L.
Durlofsky
,
J. F.
Brady
, and
G.
Bossis
, “
Dynamic simulation of hydrodynamically interacting particles
,”
J. Fluid Mech.
180
,
21
(
1987
).
69.
D.
Picchi
,
A.
Ullmann
, and
N.
Brauner
, “
Modeling of core-annular and plug flows of Newtonian/non-Newtonian shear-thinning fluids in pipes and capillary tubes.
Int. J. Multiphase Flow
103
,
43
(
2018
).
70.
S.
Tripathi
,
R. F.
Tabor
,
R.
Singh
, and
A.
Bhattacharya
, “
Characterization of interfacial waves and pressure drop in horizontal oil-water core-annular flows
,”
Phys. Fluids
29
,
082109
(
2017
).
71.
G.
Ooms
,
C.
Vuik
, and
P.
Poesio
, “
Core-annular flow through a horizontal pipe: Hydrodynamic counterbalancing of buoyancy force on core
,”
Phys. Fluids
19
,
092103
(
2007
).
72.
B.
Rajaram
and
A.
Mohraz
, “
Steady shear microstructure in dilute colloid-polymer mixtures
,”
Soft Matter
8
,
7699
(
2012
).
73.
L. D.
Gelb
,
A. L.
Graham
,
A. M.
Mertz
, and
P. H.
Koenig
, “
On the permeability of colloidal gels
,”
Phys. Fluids
31
,
021210
(
2019
).
You do not currently have access to this content.