In this study, the two-dimensional sloshing of water in a stepped based tank partially filled was analyzed using an arbitrary Lagrangian–Eulerian adaptive fixed-mesh method and including the Smagorinsky turbulence model. The numerical model is verified by contrasting the predictions made by the model with experimental results. The tank was subjected to controlled one-directional motion imposed using a shake table. The free surface evolution was followed using ultrasonic sensors, and a high-speed camera was used to record the experiments. The experimental and numerical analyses include a comparison of the wave height at different control points and snapshots of the free surface evolution for two imposed frequencies. Also, a detailed numerical study of the effects of the frequency of the imposed movement, the step height, and the fluid volume on the wave dynamics was performed. Moreover, the effect of fluid viscosity on the dynamics of the free surface was also studied. In brief, the numerical method proved to be accurate, experimental data were reported, and the effects on the numerical results of different physical and numerical aspects were exhaustively analyzed. The proposed results help to understand the sloshing of stepped geometries.

1.
S.
Hasheminejad
and
M.
Aghabeigi
, “
Sloshing characteristics in half-full horizontal elliptical tanks with vertical baffles
,”
Appl. Math. Modell.
36
,
57
71
(
2012
).
2.
F.
Viola
,
F.
Gallaire
, and
B.
Dollet
, “
Sloshing in a Hele–Shaw cell: Experiments and theory
,”
J. Fluid Mech.
831
,
R1
(
2017
).
3.
N.
Weber
,
P.
Beckstein
,
W.
Herreman
,
G.
Horstmann
,
C.
Nore
,
F.
Stefani
, and
T.
Weier
, “
Sloshing instability and electrolyte layer rupture in liquid metal batteries
,”
Phys. Fluids
29
,
054101
(
2017
).
4.
M.
Moslemi
,
A.
Farzin
, and
M.
Kianoush
, “
Nonlinear sloshing response of liquid-filled rectangular concrete tanks under seismic excitation
,”
Eng. Struct.
188
,
564
577
(
2019
).
5.
Z.
Liu
,
Y.
Feng
,
G.
Lei
, and
Y.
Li
, “
Fluid sloshing dynamic performance in a liquid hydrogen tank
,”
Int. J. Hydrogen Energy
44
,
13885
13894
(
2019
).
6.
J.
Frandsen
, “
Sloshing motions in excited tanks
,”
J. Comput. Phys.
196
,
53
87
(
2004
).
7.
S.
Hasheminejad
and
H.
Soleimani
, “
An analytical solution for free liquid sloshing in a finite-length horizontal cylindrical container filled to an arbitrary depth
,”
Appl. Math. Modell.
48
,
338
352
(
2017
).
8.
C.
Zhang
,
G.
Xiang
,
B.
Wang
,
X.
Hu
, and
N.
Adams
, “
A weakly compressible SPH method with WENO reconstruction
,”
J. Comput. Phys.
392
,
1
18
(
2019
).
9.
B.
Sanderse
and
A.
Veldman
, “
Constraint-consistent Runge–Kutta methods for one-dimensional incompressible multiphase flow
,”
J. Comput. Phys.
384
,
170
199
(
2019
).
10.
O.
Faltinsen
,
O.
Rognebakke
,
I.
Lukovsky
, and
A.
Timokha
, “
Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth
,”
J. Fluid Mech.
407
,
201
234
(
2000
).
11.
M.
Cruchaga
,
R.
Reinoso
,
M.
Storti
,
D.
Celentano
, and
T.
Tezduyar
, “
Finite element computation and experimental validation of sloshing in rectangular tanks
,”
Comput. Mech.
52
,
1301
1312
(
2013
).
12.
M.
Antuono
,
A. B. C.
Lugni
, and
M.
Brocchini
, “
A shallow-water sloshing model for wave breaking in rectangular tanks
,”
J. Fluid Mech.
746
,
437
465
(
2014
).
13.
L.
Battaglia
,
M.
Cruchaga
,
M.
Storti
,
J.
D'Elía
,
J. N.
Aedo
, and
R.
Reinoso
, “
Numerical modelling of 3D sloshing experiments in rectangular tanks
,”
Appl. Math. Modell.
59
,
357
378
(
2018
).
14.
J. N.
Aedo
,
M.
Cruchaga
, and
E. C.
del Barrio
, “
Study on the dependence with the filling level of the sloshing wave pattern in a rectangular tank
,”
Phys. Fluids
32
,
012101
(
2020
).
15.
O.
Faltinsen
,
O.
Rognebakke
, and
A.
Timokha
, “
Transient and steady-state amplitudes of resonant three-dimensional sloshing in a square base tank with a finite fluid depth
,”
Phys. Fluids
18
,
012103
(
2006
).
16.
A.
Royon-Lebeaud
,
E.
Hopfinger
, and
A.
Cartellier
, “
Liquid sloshing and wave breaking in circular and square-base cylindrical containers
,”
J. Fluid Mech.
577
,
467
494
(
2007
).
17.
T.
Ikeda
,
R.
Ibrahim
,
Y.
Harata
, and
T.
Kuriyama
, “
Nonlinear liquid sloshing in a square tank subjected to obliquely horizontal excitation
,”
J. Fluid Mech.
700
,
304
328
(
2012
).
18.
P.
Caron
,
M.
Cruchaga
, and
A.
Larreteguy
, “
Study of 3D sloshing in a vertical cylindrical tank
,”
Phys. Fluids
30
,
082112
(
2018
).
19.
E.
Castillo
,
M.
Cruchaga
,
J.
Baiges
, and
J.
Flores
, “
An oil sloshing study: Adaptive fixed-mesh ALE analysis and comparison with experiments
,”
Comput. Mech.
63
,
985
998
(
2019
).
20.
H.
Akyildiz
and
E.
Ünal
, “
Experimental investigation of pressure distribution on a rectangular tank due to the liquid sloshing
,”
Ocean Eng.
32
,
1503
1516
(
2005
).
21.
M.
Cruchaga
,
C.
Ferrada
,
N.
Márquez
,
S.
Osses
,
M.
Storti
, and
D.
Celentano
, “
Modeling the sloshing problem in a rectangular tank with submerged incomplete baffles
,”
Int. J. Numer. Methods Heat Fluid Flow
26
,
722
(
2016
).
22.
E.
Zamora
,
L.
Battaglia
,
M.
Storti
,
M.
Cruchaga
, and
R.
Ortega
, “
Numerical and experimental study of the motion of a sphere in a communicating vessel system subject to sloshing
,”
Phys. Fluids
31
,
087106
(
2019
).
23.
R.
Elahi
,
M.
Passandideh-Fard
, and
A.
Javanshir
, “
Simulation of liquid sloshing in 2D containers using the volume of fluid method
,”
Ocean Eng.
96
,
226
244
(
2015
).
24.
M.
Nekouei
and
S.
Vanapalli
, “
Volume-of-fluid simulations in microfluidic T-junction devices: Influence of viscosity ratio on droplet size
,”
Phys. Fluids
29
,
032007
(
2017
).
25.
F. D.
Vita
,
R.
Verzicco
, and
A.
Iafrati
, “
Breaking of modulated wave groups: Kinematics and energy dissipation processes
,”
J. Fluid Mech.
855
,
267
298
(
2018
).
26.
W.
Bai
,
X.
Liu
, and
C.
Koh
, “
Numerical study of violent LNG sloshing induced by realistic ship motions using level set method
,”
Ocean Eng.
97
,
100
113
(
2015
).
27.
H.-Z.
Yuan
,
C.
Shu
,
Y.
Wang
, and
S.
Shu
, “
A simple mass-conserved level set method for simulation of multiphase flows
,”
Phys. Fluids
30
,
040908
(
2018
).
28.
M.
Cruchaga
,
D.
Celentano
, and
T.
Tezduyar
, “
A moving Lagrangian interface technique for flow computations over fixed meshes
,”
Comput. Methods Appl. Mech. Eng.
191
,
525
543
(
2001
).
29.
M.
Cruchaga
,
D.
Celentano
, and
T.
Tezduyar
, “
Moving-interface computations with the edge-tracked interface locator technique (ETILT
),”
Int. J. Numer. Methods Fluids
47
,
451
469
(
2005
).
30.
A.
Huerta
and
W.
Liu
, “
Viscous flow with large free surface motion
,”
Comput. Methods Appl. Mech. Eng.
69
,
277
324
(
1988
).
31.
Y.
Du
,
C.
Wang
, and
N.
Zhang
, “
Numerical simulation on coupled ship motions with nonlinear sloshing
,”
Ocean Eng.
178
,
493
500
(
2019
).
32.
T.
Tezduyar
,
M.
Behr
,
S.
Mittal
, and
J.
Liou
, “
A new strategy for finite element computations involving moving boundaries and interfaces—The deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders
,”
Comput. Methods Appl. Mech. Eng.
94
,
353
371
(
1992
).
33.
T.
Tezduyar
and
S.
Sathe
, “
Modelling of fluid–structure interactions with the space–time finite elements: Solution techniques
,”
Int. J. Numer. Methods Fluids
54
,
855
900
(
2007
).
34.
M.
Cruchaga
,
L.
Battaglia
,
M.
Storti
, and
J.
D'Elía
, “
Numerical modeling and experimental validation of free surface flow problems
,”
Arch. Comput. Methods Eng.
23
,
139
169
(
2016
).
35.
J.
Baiges
and
R.
Codina
, “
Variational multiscale error estimators for solid mechanics adaptive simulations: An orthogonal subgrid Scale approach
,”
Comput. Methods Appl. Mech. Eng.
325
,
37
55
(
2017
).
36.
H.
Yuan
,
Y.
Wang
, and
C.
Shu
, “
An adaptive mesh refinement-multiphase Lattice Boltzmann flux solver for simulation of complex binary fluid flows
,”
Phys. Fluids
29
,
123604
(
2017
).
37.
H.
Yang
and
J.
Peng
, “
Numerical study of the shear-thinning effect on the interaction between a normal shock wave and a cylindrical liquid column
,”
Phys. Fluids
31
,
043101
(
2019
).
38.
J.
Baiges
,
R.
Codina
,
I.
Castañar
, and
E.
Castillo
, “
A finite element reduced-order model based on adaptive mesh refinement and artificial neural networks
,”
Int. J. Numer. Methods Eng.
121
,
588
601
(
2020
).
39.
P.
Díez
and
A.
Huerta
, “
A unified approach to remeshing strategies for finite element h-adaptivity
,”
Comput. Methods Appl. Mech. Eng.
176
,
215
229
(
1999
).
40.
H.
Askes
and
L.
Sluys
, “
Remeshing strategies for adaptive ALE analysis of strain localisation
,”
Eur. J. Mech., A
19
,
447
467
(
2000
).
41.
C.
Zhang
,
J.
Li
,
L.-S.
Luo
, and
T.
Qian
, “
Numerical simulation for a rising bubble interacting with a solid wall: Impact, bounce, and thin film dynamics
,”
Phys. Fluids
30
,
112106
(
2018
).
42.
W.
Garhuom
,
S.
Hubrich
,
L.
Radtke
, and
A.
Düster
, “
A remeshing strategy for large deformations in the finite cell method
,”
Comput. Math. Appl.
80
,
2379
(
2020
).
43.
R.
Codina
,
G.
Houzeaux
,
H.
Coppola-Owen
, and
J.
Baiges
, “
The fixed-mesh ALE approach for the numerical approximation of flows in moving domains
,”
J. Comput. Phys.
228
,
1591
1611
(
2009
).
44.
A.
Coppola-Owen
and
R.
Codina
, “
A finite element model for free surface flows on fixed meshes
,”
Int. J. Numer. Methods Fluids
54
,
1151
1171
(
2007
).
45.
H.
Coppola-Owen
and
R.
Codina
, “
A free surface finite element model for low Froude number mould filling problems on fixed meshes
,”
Int. J. Numer. Methods Fluids
66
,
833
851
(
2011
).
46.
J.
Baiges
and
R.
Codina
, “
The fixed-mesh ALE approach applied to solid mechanics and fluid-structure interaction problems
,”
Int. J. Numer. Methods Eng.
81
,
1557
(
2009
).
47.
J.
Baiges
,
R.
Codina
, and
H.
Coppola-Owen
, “
The fixed-mesh ALE approach for the numerical simulation of floating solids
,”
Int. J. Numer. Methods Fluids
67
,
1004
1023
(
2011
).
48.
J.
Baiges
and
C.
Bayona
, “
Refficientlib: An efficient load-rebalanced adaptive mesh refinement algorithm for high-performance computational physics meshes
,”
SIAM J. Sci. Comput.
39
,
C65
C95
(
2017
).
49.
J.
Baiges
,
R.
Codina
,
A.
Pont
, and
E.
Castillo
, “
An adaptive fixed-mesh ALE method for free surface flows
,”
Comput. Methods Appl. Mech. Eng.
313
,
159
188
(
2017
).
50.
E.
Castillo
and
R.
Codina
, “
Dynamic term-by-term stabilized finite element formulation using orthogonal subgrid-scales for the incompressible Navier–Stokes problem
,”
Comput. Methods Appl. Mech. Eng.
349
,
701
721
(
2019
).
51.
A.
Aguirre
,
E.
Castillo
,
M.
Cruchaga
,
R.
Codina
, and
J.
Baiges
, “
Stationary and time-dependent numerical approximation of the lid-driven cavity problem for power-law fluid flows at high Reynolds numbers using a stabilized finite element formulation of the VMS type
,”
J. Non-Newtonian Fluid Mech.
257
,
22
43
(
2018
).
52.
A.
Aguirre
,
E.
Castillo
,
M.
Cruchaga
,
R.
Codina
, and
J.
Baiges
, “
Pseudoplastic fluid flows for different Prandtl numbers: Steady and time-dependent solutions
,”
Int. J. Therm. Sci.
145
,
106022
(
2019
).
53.
O.
Ruz
,
E.
Castillo
,
M.
Cruchaga
, and
A.
Aguirre
, “
Numerical study of the effect of blockage ratio on the flow past one and two cylinders in tandem for different power-law fluids
,”
Appl. Math. Modell.
89
,
1640
1662
(
2021
).
54.
C.
Hirt
,
A.
Amsden
, and
J.
Cook
, “
An arbitrary Lagrangian–Eulerian computing method for all flow speeds
,”
J. Comput. Phys.
135
,
203
216
(
1997
).
55.
T.
Hughes
,
G. R.
Feijóo
,
L.
Mazzei
, and
J.-B.
Quincy
, “
The variational multiscale method—A paradigm for computational mechanics
,”
Comput. Methods Appl. Mech. Eng.
166
,
3
24
(
1998
).
56.
R.
Codina
, “
A stabilized finite element method for generalized stationary incompressible flows
,”
Comput. Methods Appl. Mech. Eng.
190
,
2681
2706
(
2001
).
57.
G.
Buscaglia
,
F.
Basombrío
, and
R.
Codina
, “
Fourier analysis of an equal-order incompressible flow solver stabilized by pressure gradient projection
,”
Int. J. Numer. Methods Fluids
34
,
65
92
(
2000
).
58.
A.
González
,
E.
Castillo
, and
M.
Cruchaga
, “
Numerical verification of a non-residual orthogonal term-by-term stabilized finite element formulation for incompressible convective flow problems
,”
Comput. Math. Appl.
80
,
1009
1028
(
2020
).
59.
E.
Burman
and
M.
Fernández
, “
An unfitted Nitsche method for incompressible fluid-structure interaction using overlapping meshes
,”
Comput. Methods Appl. Mech. Eng.
279
,
497
514
(
2014
).
60.
A.
Brooks
and
T.
Hughes
, “
Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations
,”
Comput. Methods Appl. Mech. Eng.
32
,
199
259
(
1982
).
61.
S. D.
Costarelli
,
L.
Garelli
,
M. A.
Cruchaga
,
M. A.
Storti
,
R.
Ausensi
, and
S. R.
Idelsohn
, “
An embedded strategy for the analysis of fluid structure interaction problems
,”
Comput. Methods Appl. Mech. Eng.
300
,
106
128
(
2016
).
62.
F.
Yaşar
,
H.
Toğrul
, and
N.
Arslan
, “
Flow properties of cellulose and carboxymethyl cellulose from orange peel
,”
J. Food Eng.
81
,
187
199
(
2007
).
You do not currently have access to this content.