The generation of monodispersed droplets in T-junction microchannels has wide range applications in biochemical analysis and material synthesis. While the generation of these monodispersed droplets was previously considered to be a balance between forces acting from continuous phase and interfacial force, it is shown here that the inertial force from the dispersed phase also plays an important role in determining the size of the generated droplets. A theoretical analysis for the size of monodisperse droplets generated in a microfluidic T-junction device is developed, and it is validated with a large set of experimental observations. The theoretical analysis accounts for the inertial forces from the dispersed phase along with the forces from the continuous phase and the interfacial forces to define the non-dimensional numbers that govern the droplet breakup in the T-junction microchannel.

1.
S.-Y.
Teh
,
R.
Lin
,
L.-H.
Hung
, and
A. P.
Lee
, “
Droplet microfluidics
,”
Lab Chip
8
,
198
220
(
2008
).
2.
C. N.
Baroud
,
F.
Gallaire
, and
R.
Dangla
, “
Dynamics of microfluidic droplets
,”
Lab Chip
10
,
2032
2045
(
2010
).
3.
R.
Seemann
,
M.
Brinkmann
,
T.
Pfohl
, and
S.
Herminghaus
, “
Droplet based microfluidics
,”
Rep. Prog. Phys.
75
,
016601
(
2012
).
4.
L.
Shang
,
Y.
Cheng
, and
Y.
Zhao
, “
Emerging droplet microfluidics
,”
Chem. Rev.
117
,
7964
8040
(
2017
).
5.
X.-B.
Li
,
F.-C.
Li
,
J.-C.
Yang
,
H.
Kinoshita
,
M.
Oishi
, and
M.
Oshima
, “
Study on the mechanism of droplet formation in T-junction microchannel
,”
Chem. Eng. Sci.
69
,
340
351
(
2012
).
6.
Y.
Zhang
,
J.
Fan
, and
L.
Wang
, “
Formation of nanoliter droplets in a confined microfluidic T-shaped junction: Formation time and droplet volume
,”
Curr. Nanosci.
5
,
519
526
(
2009
).
7.
S.
Sohrabi
,
M. K.
Moraveji
 et al., “
Droplet microfluidics: Fundamentals and its advanced applications
,”
RSC Adv.
10
,
27560
27574
(
2020
).
8.
S.
Van Loo
,
S.
Stoukatch
,
M.
Kraft
, and
T.
Gilet
, “
Droplet formation by squeezing in a microfluidic cross-junction
,”
Microfluid. Nanofluid.
20
,
146
(
2016
).
9.
S.
Wu
,
J.
Chen
,
X.
Liu
, and
F.
Yao
, “
Experimental study of droplet formation in the cross-junction
,”
J. Dispersion Sci. Technol.
(published online) (
2020
).
10.
J.
Sivasamy
,
T.-N.
Wong
,
N.-T.
Nguyen
, and
L. T.-H.
Kao
, “
An investigation on the mechanism of droplet formation in a microfluidic T-junction
,”
Microfluid. Nanofluid.
11
,
1
10
(
2011
).
11.
P.
Kumar
and
M.
Pathak
, “
Pressure transient during wettability mediated droplet formation in a microfluidic T-junction
,”
Ind. Eng. Chem. Res.
59
,
11839
(
2020
).
12.
H.
Song
,
D. L.
Chen
, and
R. F.
Ismagilov
, “
Reactions in droplets in microfluidic channels
,”
Angew. Chem., Int. Ed.
45
,
7336
7356
(
2006
).
13.
J.
Chen
,
D.
Chen
,
Y.
Xie
,
T.
Yuan
, and
X.
Chen
, “
Progress of microfluidics for biology and medicine
,”
Nano-Micro Lett.
5
,
66
80
(
2013
).
14.
S.
Mashaghi
,
A.
Abbaspourrad
,
D. A.
Weitz
, and
A. M.
van Oijen
, “
Droplet microfluidics: A tool for biology, chemistry and nanotechnology
,”
TrAC Trends Anal. Chem.
82
,
118
125
(
2016
).
15.
T. S.
Kaminski
,
O.
Scheler
, and
P.
Garstecki
, “
Droplet microfluidics for microbiology: Techniques, applications and challenges
,”
Lab Chip
16
,
2168
2187
(
2016
).
16.
A.
Wang
,
A.
Abdulla
, and
X.
Ding
, “
Microdroplets-on-chip: A review
,”
Proc. Inst. Mech. Eng., Part H
233
,
683
694
(
2019
).
17.
Z. Z.
Chong
,
S. H.
Tan
,
A. M.
Gañán-Calvo
,
S. B.
Tor
,
N. H.
Loh
, and
N.-T.
Nguyen
, “
Active droplet generation in microfluidics
,”
Lab Chip
16
,
35
58
(
2016
).
18.
R.
Singh
,
S.
Bahga
, and
A.
Gupta
, “
Electrohydrodynamic droplet formation in a T-junction microfluidic device
,”
J. Fluid Mech.
905
,
A29
(
2020
).
19.
P.
Zhu
and
L.
Wang
, “
Passive and active droplet generation with microfluidics: A review
,”
Lab Chip
17
,
34
75
(
2017
).
20.
G. F.
Christopher
and
S. L.
Anna
, “
Microfluidic methods for generating continuous droplet streams
,”
J. Phys. D
40
,
R319
R336
(
2007
).
21.
T.
Thorsen
,
R. W.
Roberts
,
F. H.
Arnold
, and
S. R.
Quake
, “
Dynamic pattern formation in a vesicle-generating microfluidic device
,”
Phys. Rev. Lett.
86
,
4163
(
2001
).
22.
T.
Nisisako
,
T.
Torii
, and
T.
Higuchi
, “
Droplet formation in a microchannel network
,”
Lab Chip
2
,
24
26
(
2002
).
23.
P.
Garstecki
,
M. J.
Fuerstman
,
H. A.
Stone
, and
G. M.
Whitesides
, “
Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up
,”
Lab Chip
6
,
437
446
(
2006
).
24.
M.
De Menech
,
P.
Garstecki
,
F.
Jousse
, and
H. A.
Stone
, “
Transition from squeezing to dripping in a microfluidic T-shaped junction
,”
J. Fluid Mech.
595
,
141
161
(
2008
).
25.
J.
Xu
,
S.
Li
,
J.
Tan
,
Y.
Wang
, and
G.
Luo
, “
Preparation of highly monodisperse droplet in a T-junction microfluidic device
,”
AIChE J.
52
,
3005
3010
(
2006
).
26.
G. F.
Christopher
,
N. N.
Noharuddin
,
J. A.
Taylor
, and
S. L.
Anna
, “
Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions
,”
Phys. Rev. E
78
,
036317
(
2008
).
27.
Z.
Nie
,
M.
Seo
,
S.
Xu
,
P. C.
Lewis
,
M.
Mok
,
E.
Kumacheva
,
G. M.
Whitesides
,
P.
Garstecki
, and
H. A.
Stone
, “
Emulsification in a microfluidic flow-focusing device: Effect of the viscosities of the liquids
,”
Microfluid. Nanofluid.
5
,
585
594
(
2008
).
28.
A.
Gupta
and
R.
Kumar
, “
Flow regime transition at high capillary numbers in a microfluidic T-junction: Viscosity contrast and geometry effect
,”
Phys. Fluids
22
,
122001
(
2010
).
29.
T.
Glawdel
,
C.
Elbuken
, and
C. L.
Ren
, “
Droplet formation in microfluidic T-junction generators operating in the transitional regime. I. Experimental observations
,”
Phys. Rev. E
85
,
016322
(
2012
).
30.
J. D.
Tice
,
A. D.
Lyon
, and
R. F.
Ismagilov
, “
Effects of viscosity on droplet formation and mixing in microfluidic channels
,”
Anal. Chim. Acta
507
,
73
77
(
2004
).
31.
H.
Liu
and
Y.
Zhang
, “
Droplet formation in a T-shaped microfluidic junction
,”
J. Appl. Phys.
106
,
034906
(
2009
).
32.
J. H.
Xu
,
S.
Li
,
J.
Tan
, and
G.
Luo
, “
Correlations of droplet formation in T-junction microfluidic devices: From squeezing to dripping
,”
Microfluid. Nanofluid.
5
,
711
717
(
2008
).
33.
T.
Glawdel
,
C.
Elbuken
, and
C. L.
Ren
, “
Droplet formation in microfluidic T-junction generators operating in the transitional regime. II. Modeling
,”
Phys. Rev. E
85
,
016323
(
2012
).
34.
X.
Li
,
L.
He
,
Y.
He
,
H.
Gu
, and
M.
Liu
, “
Numerical study of droplet formation in the ordinary and modified T-junctions
,”
Phys. Fluids
31
,
082101
(
2019
).
35.
J.
Nunes
,
S.
Tsai
,
J.
Wan
, and
H. A.
Stone
, “
Dripping and jetting in microfluidic multiphase flows applied to particle and fibre synthesis
,”
J. Phys. D
46
,
114002
(
2013
).
36.
P. M.
Korczyk
,
V.
Van Steijn
,
S.
Blonski
,
D.
Zaremba
,
D. A.
Beattie
, and
P.
Garstecki
, “
Accounting for corner flow unifies the understanding of droplet formation in microfluidic channels
,”
Nat. Commun.
10
,
1
9
(
2019
).
37.
N.-A.
Goy
,
Z.
Denis
,
M.
Lavaud
,
A.
Grolleau
,
N.
Dufour
,
A.
Deblais
, and
U.
Delabre
, “
Surface tension measurements with a smartphone
,”
Phys. Teach.
55
,
498
499
(
2017
).
38.
M.
Nekouei
and
S. A.
Vanapalli
, “
Volume-of-fluid simulations in microfluidic T-junction devices: Influence of viscosity ratio on droplet size
,”
Phys. Fluids
29
,
032007
(
2017
).
39.
J. D.
Wehking
,
M.
Gabany
,
L.
Chew
, and
R.
Kumar
, “
Effects of viscosity, interfacial tension, and flow geometry on droplet formation in a microfluidic T-junction
,”
Microfluid. Nanofluid.
16
,
441
453
(
2014
).
40.
M.
De Menech
, “
Modeling of droplet breakup in a microfluidic T-shaped junction with a phase-field model
,”
Phys. Rev. E
73
,
031505
(
2006
).
41.
X.
Wang
,
A.
Riaud
,
K.
Wang
, and
G.
Luo
, “
Pressure drop-based determination of dynamic interfacial tension of droplet generation process in T-junction microchannel
,”
Microfluid. Nanofluid.
18
,
503
512
(
2015
).
42.
N. M.
Kovalchuk
,
E.
Roumpea
,
E.
Nowak
,
M.
Chinaud
,
P.
Angeli
, and
M. J.
Simmons
, “
Effect of surfactant on emulsification in microchannels
,”
Chem. Eng. Sci.
176
,
139
152
(
2018
).

Supplementary Material

You do not currently have access to this content.