The electrokinetic transports of viscoelastic fluids are investigated in different channel geometries. The fluid elasticity is responsible for the generation of resonance behaviors under periodic pressure gradient driving. We introduce a universal Deborah number defined by the surface-to-volume ratio of the channel, and thereby a critical value Dec = 1/4 can be applied to different channel geometries. Above this threshold, the resonances occur at particular frequencies and result in a dramatic increase in the amplitudes of the flow rate, streaming potential, and energy conversion efficiency. The locations of resonant peaks are determined by the ratio of the effective characteristic size of the channel to the wavelength of viscoelastic shear waves. Interestingly, in the annular geometry with small effective size, even order resonances are suppressed significantly relative to odd order resonances. For the maximum energy conversion efficiency in steady flows in different geometries, we find that the annular geometry is optimal, which has a 20% increase in the maximum efficiency compared to the cylindrical geometry.
Skip Nav Destination
Article navigation
March 2021
Research Article|
March 26 2021
Resonance behaviors in periodic viscoelastic electrokinetic flows: A universal Deborah number
Zhaodong Ding (丁兆东)
;
Zhaodong Ding (丁兆东)
School of Mathematical Science, Inner Mongolia University
, Hohhot, Inner Mongolia 010021, China
Search for other works by this author on:
Yongjun Jian (菅永军)
Yongjun Jian (菅永军)
a)
School of Mathematical Science, Inner Mongolia University
, Hohhot, Inner Mongolia 010021, China
a)Author to whom correspondence should be addressed: [email protected]
Search for other works by this author on:
a)Author to whom correspondence should be addressed: [email protected]
Physics of Fluids 33, 032023 (2021)
Article history
Received:
February 07 2021
Accepted:
March 02 2021
Citation
Zhaodong Ding, Yongjun Jian; Resonance behaviors in periodic viscoelastic electrokinetic flows: A universal Deborah number. Physics of Fluids 1 March 2021; 33 (3): 032023. https://doi.org/10.1063/5.0046861
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
Chinese Academy of Science Journal Ranking System (2015–2023)
Cruz Y. Li (李雨桐), 李雨桐, et al.
On Oreology, the fracture and flow of “milk's favorite cookie®”
Crystal E. Owens, Max R. Fan (范瑞), et al.
Physics-informed neural networks for solving Reynolds-averaged Navier–Stokes equations
Hamidreza Eivazi, Mojtaba Tahani, et al.
Related Content
The electrokinetic energy conversion analysis of viscoelastic Maxwell nanofluids with couple stress in circular microchannels
Physics of Fluids (September 2024)
Streaming potential of viscoelastic fluids with the pressure-dependent viscosity in nanochannel
Physics of Fluids (March 2024)
Effect of solvent depletion on electrokinetic energy conversion in viscoelastic fluids
Physics of Fluids (June 2024)
Analytical investigation of electrokinetic effects of micropolar fluids in nanofluidic channels
Physics of Fluids (August 2017)
Electrokinetic flow of fluids with pressure-dependent viscosity in a nanotube
Physics of Fluids (December 2021)