In electrolyte solutions, charged nanoscale pores or channels with overlapping electrical double layers are charge selective, thereby benefiting a wide range of applications such as desalination, bio-sensing, membrane technology, and renewable energy. As an important forcing mechanism, a gradient of electrolyte concentration along a charged nano-confinement can drive flow without an external electrical field or applied pressure difference. In this paper, we numerically investigate such a diffusioosmotic nanoflow, particularly for dilute electrolyte concentrations (0.01 mM–1 mM), and calculate the corresponding electrical and concentration fields in a charged nanochannel connecting two reservoirs of different salt concentrations—a typical fluidic configuration for a variety of experimental applications. Under a wide range of parameters, the simulation results show that the flow speed inside the nanochannel is linearly dependent on the concentration difference between the two reservoir solutions, Δc, whereas the flow direction is primarily influenced by three key parameters: nanochannel length (l), height (h), and surface charge density (σ). Through a comparison of the chemiosmotic (due to ion-concentration difference) and electroosmotic (as a result of the induced electric field) components of this diffusioosmotic flow, a non-dimensional number (C=h/lλGC) has been identified to delineate different nanoscale flow directions in the charged nanochannel, where λGC is a characteristic (so-called Gouy–Chapman) length associated with surface charge and inversely proportional to σ. This critical dimensionless parameter, dependent on the above three key nanochannel parameters, can help in providing a feasible strategy for flow control in a charged nanochannel.

1.
B. D.
Gates
,
Q.
Xu
,
M.
Stewart
,
D.
Ryan
,
C. G.
Willson
, and
G. M.
Whitesides
, “
New approaches to nanofabrication: Molding, printing, and other techniques
,”
Chem. Rev.
105
,
1171
(
2005
).
2.
A.
Egatz-gomez
,
C.
Wang
,
F.
Klacsmann
,
Z.
Pan
,
S.
Marczak
,
Y.
Wang
,
G.
Sun
,
S.
Senapati
, and
H.-C.
Chang
, “
Future microfluidic and nanofluidic modular platforms for nucleic acid liquid biopsy in precision medicine
,”
Biomicrofluidics
10
,
032902
(
2016
).
3.
Y.
Yan
,
Y.
Wang
,
S.
Senapati
,
J.
Schiffbauer
,
G.
Yossifon
, and
H. C.
Chang
, “
Robust ion current oscillations under a steady electric field: An ion channel analog
,”
Phys. Rev. E
94
,
022613
(
2016
).
4.
J. C. T.
Eijkel
and
A. V. D.
Berg
, “
Nanofluidics: What is it and what can we expect from it?
,”
Microfluidics Nanofluidics
1
,
249
(
2005
).
5.
L.
Bocquet
and
E.
Charlaix
, “
Nanofluidics, from bulk to interfaces
,”
Chem. Soc. Rev.
39
,
1073
(
2010
).
6.
L.
Bocquet
and
P.
Tabeling
, “
Physics and technological aspects of nanofluidics
,”
Lab Chip
14
,
3143
(
2014
).
7.
B. V.
Derjaguin
,
S. S.
Dukhin
, and
M. M.
Koptelova
, “
Capillary osmosis through porous partitions and properties of boundary layers of solutions
,”
J. Colloid Interface Sci.
38
,
584
(
1972
).
8.
Z.
Slouka
,
S.
Senapati
, and
H.-C.
Chang
, “
Microfluidic systems with ion-selective membranes
,”
Annu. Rev. Anal. Chem.
7
,
317
(
2014
).
9.
S.
Samin
and
R.
van Roij
, “
Solvo-osmotic flow in electrolytic mixtures
,”
J. Fluid Mech.
819
,
R11
(
2017
); arXiv:1703.06643.
10.
B. L.
Werkhoven
and
R.
van Roij
, “
Coupled water, charge and salt transport in heterogeneous nano-fluidic systems
,”
Soft Matter
16
,
1527
(
2020
).
11.
S. J.
Kim
,
S. H.
Ko
,
K. H.
Kang
, and
J.
Han
, “
Direct seawater desalination by ion concentration polarization
,”
Nat. Nanotechnol.
5
,
297
(
2010
).
12.
D.
Deng
,
E. V.
Dydek
,
J.-h.
Han
,
S.
Schlumpberger
,
B.
Zaltzman
, and
M. Z.
Bazant
, “
Overlimiting current and shock electrodialysis in porous media
,”
Langmuir
29
,
16167
(
2013
).
13.
S.
Schlumpberger
,
N. B.
Lu
,
M. E.
Suss
, and
M. Z.
Bazant
, “
Scalable and continuous water deionization by shock electrodialysis
,”
Environ. Sci. Technol. Lett.
2
,
367
(
2015
).
14.
S.
Park
,
Y.
Jung
,
S. Y.
Son
,
I.
Cho
,
Y.
Cho
,
H.
Lee
,
H.-y.
Kim
, and
S. J.
Kim
, “
Capillarity ion concentration polarization as spontaneous desalting mechanism
,”
Nat. Commun.
7
,
11223
(
2016
).
15.
O. V.
Hulko
,
B. J.
Robinson
, and
R. N.
Kleiman
, “
Fabrication of nanoscale single crystal InP membranes
,”
Appl. Phys. Lett.
91
,
053119
(
2007
).
16.
F.
Gertz
,
R.
Azimov
, and
A.
Khitun
, “
Biological cell positioning and spatially selective destruction via magnetic nanoparticles
,”
Appl. Phys. Lett.
101
,
013701
(
2012
).
17.
B. D.
Kang
,
H. J.
Kim
,
M. G.
Lee
, and
D.-K.
Kim
, “
Numerical study on energy harvesting from concentration gradient by reverse electrodialysis in anodic alumina nanopores
,”
Energy
86
,
525
(
2015
).
18.
M.
Marino
,
L.
Misuri
,
A.
Carati
, and
D.
Brogioli
, “
Boosting the voltage of a salinity-gradient-power electrochemical cell by means of complex-forming solutions
,”
Appl. Phys. Lett.
105
,
033901
(
2014
).
19.
S. H.
Kwak
,
S.-R.
Kwon
,
S.
Baek
,
S.-M.
Lim
,
Y.-C.
Joo
, and
T. D.
Chung
, “
Densely charged polyelectrolyte-stuffed nanochannel arrays for power generation from salinity gradient
,”
Sci. Rep.
6
,
26416
(
2016
).
20.
S.
Chanda
and
P. A.
Tsai
, “
Numerical simulation of renewable power generation using reverse electrodialysis
,”
Energy
176
,
531
(
2019
).
21.
J.
Moreno
,
S.
Grasman
,
R.
van Engelen
, and
K.
Nijmeijer
, “
Upscaling reverse electrodialysis
,”
Environ. Sci. Tech.
52
,
10856
(
2018
).
22.
H.-R.
Jiang
,
N.
Yoshinaga
, and
M.
Sano
, “
Active motion of a Janus particle by self-thermophoresis in a defocused laser beam
,”
Phys. Rev. Lett.
105
,
268302
(
2010
).
23.
M.
Taghipoor
,
A.
Bertsch
, and
P.
Renaud
, “
Thermal control of ionic transport and fluid flow in nanofluidic channels
,”
Nanoscale
7
,
18799
(
2015
).
24.
P. B.
Umbanhowar
,
V.
Prasad
, and
D. A.
Weitz
, “
Monodisperse emulsion generation via drop break off in a coflowing stream
,”
Langmuir
16
,
347
(
2000
).
25.
C.
Bakli
and
S.
Chakraborty
, “
Capillary filling dynamics of water in nanopores
,”
Appl. Phys. Lett.
101
,
153112
(
2012
).
26.
D. C.
Prieve
, “
Migration of a colloidal particle in a gradient of electrolyte concentration
,”
Adv. Colloid Interface Sci.
16
,
321
(
1982
).
27.
H.-C.
Chang
,
G.
Yossifon
, and
E. A.
Demekhin
, “
Nanoscale electrokinetics and microvortices: How microhydrodynamics affects nanofluidic ion flux
,”
Annu. Rev. Fluid Mech.
44
,
421
(
2012
).
28.
R.
Hunter
,
Zeta Potential in Colloid Science: Principles and Applications
(
Academic Press
,
1981
).
29.
H. J.
Keh
and
L. Y.
Hsu
, “
Diffusioosmotic flow of electrolyte solutions in fibrous porous media at arbitrary zeta potential and double-layer thickness
,”
Microfluidics Nanofluidics
7
,
773
(
2009
).
30.
S. S.
Dukhin
, “
Non-equilibrium electric surface phenomena
,”
Adv. Colloid Interface Sci.
44
,
1
(
1993
).
31.
D. C.
Prieve
,
J. L.
Anderson
,
J. P.
Ebel
, and
M. E.
Lowell
, “
Motion of a particle generated by chemical gradients. Part 2. Electrolytes
,”
J. Fluid Mech.
148
,
247
(
1984
).
32.
H. J.
Keh
and
Y. K.
Wei
, “
Osmosis through a fibrous medium caused by transverse electrolyte concentration gradients
,”
Langmuir
18
,
10475
(
2002
).
33.
H. J.
Keh
and
H. C.
Ma
, “
Diffusioosmosis of electrolyte solutions along a charged plane wall
,”
Langmuir
21
,
5461
(
2005
).
34.
V.
Hoshyargar
,
S.
Nezameddin Ashrafizadeh
, and
A.
Sadeghi
, “
Diffusioosmotic flow in rectangular microchannels
,”
Electrophoresis
37
,
809
(
2016
).
35.
J. H.
Wu
and
H. J.
Keh
, “
Diffusioosmosis and electroosmosis in a capillary slit with surface charge layers
,”
Colloids Surf., A
212
,
27
(
2003
).
36.
V.
Hoshyargar
,
A.
Sadeghi
, and
S. N.
Ashrafizadeh
, “
Bounded amplification of diffusioosmosis utilizing hydrophobicity
,”
RSC Adv.
6
,
49517
(
2016
).
37.
V.
Hoshyargar
,
S. N.
Ashrafizadeh
, and
A.
Sadeghi
, “
Mass transport characteristics of diffusioosmosis: Potential applications for liquid phase transportation and separation
,”
Phys. Fluids
29
,
012001
(
2017
).
38.
S.
Marbach
and
L.
Bocquet
, “
Osmosis, from molecular insights to large-scale applications
,”
Chem. Soc. Rev.
48
,
3102
(
2019
); arXiv:1902.06219.
39.
H. J.
Keh
and
J. H.
Wu
, “
Electrokinetic flow in fine capillaries caused by gradients of electrolyte concentration
,”
Langmuir
17
,
4216
(
2001
).
40.
H. B.
Ma
,
C.
Wilson
,
B.
Borgmeyer
,
K.
Park
,
Q.
Yu
,
S. U. S.
Choi
, and
M.
Tirumala
, “
Effect of nanofluid on the heat transport capability in an oscillating heat pipe
,”
Appl. Phys. Lett.
88
,
143116
(
2006
).
41.
H. J.
Keh
and
L. Y.
Hsu
, “
Diffusioosmosis of electrolyte solutions in fibrous porous media
,”
Microfluidics Nanofluidics
5
,
347
(
2008
).
42.
D. M.
Huang
,
C.
Cottin-Bizonne
,
C.
Ybert
, and
L.
Bocquet
, “
Ion-specific anomalous electrokinetic effects in hydrophobic nanochannels
,”
Phys. Rev. E
98
,
177801
(
2007
).
43.
D. M.
Huang
,
C.
Cottin-Bizonne
,
C.
Ybert
, and
L.
Bocquet
, “
Massive amplification of surface-induced transport at superhydrophobic surfaces
,”
Phys. Rev. Lett.
101
,
064503
(
2008
).
44.
I.
Cho
,
W.
Kim
,
J.
Kim
,
H.-y.
Kim
,
H.
Lee
, and
S. J.
Kim
, “
Non-negligible diffusio-osmosis inside an ion concentration polarization layer
,”
Phys. Rev. Lett.
116
,
254501
(
2016
).
45.
H.
Jeon
,
H.
Lee
,
K. H.
Kang
, and
G.
Lim
, “
Ion concentration polarization-based continuous separation device using electrical repulsion in the depletion region
,”
Sci. Rep.
3
,
3483
(
2013
).
46.
S.
Qian
,
B.
Das
, and
X.
Luo
, “
Diffusioosmotic flows in slit nanochannels
,”
J. Colloid Interface Sci.
315
,
721
(
2007
).
47.
K.-L.
Liu
,
J.-P.
Hsu
, and
S.
Tseng
, “
Capillary osmosis in a charged nanopore connecting two large reservoirs
,”
Langmuir
29
,
9598
(
2013
).
48.
E.
Choi
,
K.
Kwon
,
D.
Kim
, and
J.
Park
, “
Tunable reverse electrodialysis microplatform with geometrically controlled self-assembled nanoparticle network
,”
Lab Chip
15
,
168
(
2015
).
49.
D.
Deng
,
W.
Aouad
,
W. A.
Braff
,
S.
Schlumpberger
,
M. E.
Suss
, and
M. Z.
Bazant
, “
Water purification by shock electrodialysis: Deionization, filtration, separation, and disinfection
,”
Desalination
357
,
77
(
2015
).
50.
R.
Chein
and
B.
Liu
, “
Energy conversion from electrolyte concentration gradient using charged nano-pores
,”
Int. J. Green Energy
13
,
1400
(
2017
).
51.
K. S.
Kim
,
W.
Ryoo
,
M.-S.
Chun
, and
G.-Y.
Chung
, “
Simulation of enhanced power generation by reverse electrodialysis stack module in serial configuration
,”
Desalination
318
,
79
(
2013
).
52.
W.
Kim
,
J.
Lee
,
G.
Yun
,
G. Y.
Sung
, and
S. J.
Kim
, “
Direct visualization of perm-selective ion transportation
,”
Sci. Rep.
10
,
8898
(
2020
).
53.
S. J.
Kim
,
Y. C.
Wang
,
J. H.
Lee
,
H. C.
Jang
, and
J. Y.
Han
, “
Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel
,”
Phys. Rev. Lett.
99
,
044501
(
2007
).
54.
C.
Lee
,
C.
Cottin-Bizonne
,
A. L.
Biance
,
P.
Joseph
,
L.
Bocquet
, and
C.
Ybert
, “
Osmotic flow through fully permeable nanochannels
,”
Phys. Rev. Lett.
112
,
244501
(
2014
).
55.
C.
Lee
,
C.
Cottin-Bizonne
,
R.
Fulcrand
,
L.
Joly
, and
C.
Ybert
, “
Nanoscale dynamics versus surface interactions: What dictates osmotic transport?
,”
J. Phys. Chem. Lett.
8
,
478
(
2017
).
56.
K.
Sears
,
L.
Dumée
,
J.
Schütz
,
M.
She
,
C.
Huynh
,
S.
Hawkins
,
M.
Duke
, and
S.
Gray
, “
Recent developments in carbon nanotube membranes for water purification and gas separation
,”
Materials
3
,
127
(
2010
).
57.
R.
Das
,
M. E.
Ali
,
S. B. A.
Hamid
,
S.
Ramakrishna
, and
Z. Z.
Chowdhury
, “
Carbon nanotube membranes for water purification: A bright future in water desalination
,”
Desalination
336
,
97
(
2014
).
58.
J.
Experton
,
X.
Wu
, and
C. R.
Martin
, “
From ion current to electroosmotic flow rectification in asymmetric nanopore membranes
,”
Nanomaterials
7
,
445
(
2017
).
59.
Z.
Siwy
and
A.
Fuliński
, “
Fabrication of a synthetic nanopore ion pump
,”
Phys. Rev. Lett.
89
,
198103
(
2002
).
60.
Z. S.
Siwy
, “
Ion-current rectification in nanopores and nanotubes with broken symmetry
,”
Adv. Funct. Mater.
16
,
735
(
2006
).
61.
A.
Siria
,
M.-L.
Bocquet
, and
L.
Bocquet
, “
New avenues for the large-scale harvesting of blue energy
,”
Nat. Rev. Chem.
1
,
0091
(
2017
).
62.
R. J.
Hunter
,
Foundations of Colloid Science
, 2nd ed. (
Oxford University Press
,
2001
).
63.
D. J.
Griffiths
,
Introduction to Electrodynamics
, 4th ed. (
Pearson
,
Boston, MA
,
2013
).
64.
R. F.
Probstein
,
Physicochemical Hydrodynamics: An Introduction
(
Butterworths Publishers
,
1989
).
65.
N.
Lakshminarayanaiah
, “
Transport phenomena in artificial membranes
,”
Chem. Rev.
65
,
491
(
1965
).
66.
Y. A.
Cengel
and
J. M.
Cimbala
,
Fluid Mechanics Fundamental and Applications
, 4th ed. (
McGraw-Hill Education
,
New York, NY
,
2017
).
67.
D.
Burgreen
and
F. R.
Nakache
, “
Electrokinetic flow in ultrafine capillary slits
,”
J. Phys. Chem.
68
,
1084
(
1964
).
68.
J. H.
Masliyah
and
S.
Bhattacharjee
,
Electrokinetic and Colloid Transport Phenomena
(
John Wiley & Sons
,
2006
).
69.
P.
Pivonka
and
D.
Smith
, “
Investigation of nanoscale electrohydrodynamic transport phenomena in charged porous materials
,”
Int. J. Numer. Methods Eng.
63
,
1975
(
2005
).
70.
G. B.
Westermann-Clark
and
C. C.
Christoforou
, “
The exclusion-diffusion potential in charged porous membranes
,”
J. Electroanal. Chem. Interfacial Electrochem.
198
,
213
(
1986
).
71.
S. H.
Behrens
and
D. G.
Grier
, “
The charge of glass and silica surfaces
,”
J. Chem. Phys.
115
,
6716
(
2001
); arXiv:hep-ph/0105149.
72.
Y.
Yan
,
Q.
Sheng
,
C.
Wang
,
J.
Xue
, and
H.-C.
Chang
, “
Energy conversion efficiency of nanofluidic batteries: Hydrodynamic slip and access resistance
,”
J. Phys. Chem. C
117
,
8050
(
2013
).
73.
P. B.
Peters
,
R. V.
Roij
,
M. Z.
Bazant
, and
P. M.
Biesheuvel
, “
Analysis of electrolyte transport through charged nanopores
,”
Phys. Rev. E
93
,
053108
(
2016
).
74.
S.
Gravelle
, “
Nanofluidics: A theoretical and numerical investigation of fluid transport in nanochannels
,” Ph.D. thesis,
University of Lyon
,
2015
.
75.
R. B.
Schoch
,
J.
Han
, and
P.
Renaud
, “
Transport phenomena in nanofluidics
,”
Rev. Mod. Phys.
80
,
839
(
2008
).
76.
S.
Shin
,
J. T.
Ault
,
P. B.
Warren
, and
H. A.
Stone
, “
Accumulation of colloidal particles in flow junctions induced by fluid flow and diffusiophoresis
,”
Phys. Rev. X
7
,
041038
(
2017
).
77.
A.
Ajdari
and
L.
Bocquet
, “
Giant amplification of interfacially driven transport by hydrodynamic slip: Diffusio-osmosis and beyond
,”
Phys. Rev. Lett.
96
,
186102
(
2006
).
78.
P.
Sharma
,
J.-F.
Motte
,
F.
Fournel
,
B.
Cross
,
E.
Charlaix
, and
C.
Picard
, “
A direct sensor to measure minute liquid flow rates
,”
Nano Lett.
18
,
5726
(
2018
).
79.
G. A.
Cooksey
,
P. N.
Patrone
,
J. R.
Hands
,
S. E.
Meek
, and
A. J.
Kearsley
, “
Dynamic measurement of nanoflows: Realization of an optofluidic flow meter to the nanoliter-per-minute scale
,”
Anal. Chem.
91
,
10713
(
2019
).
You do not currently have access to this content.