The impetus of this paper is to assess the newly suggested direct simulation Monte Carlo (DSMC) collision schemes, that is, the “Simplified Bernoulli Trails (SBT)” and “Generalized Bernoulli Trials (GBT)” schemes in the prediction of the higher-order moments of the velocity distribution function for both confined and non-confined gas flows. Two fundamental rarefied gas dynamics problems are considered: spatially homogeneous relaxation process of a gas flow from a non-Maxwellian condition given by Bobylev–Krook–Wu exact (analytical) solution of the Boltzmann equation and the stationary shock wave problem. To perform the relaxation test, SBT and GBT schemes were implemented in the DSMC0F program. For the shock wave test, changes were made in the DSMC1 code to include the SBT and GBT schemes. A detailed comparison of the SBT and GBT collision schemes in treating the higher-order moments of the velocity distribution function and comparison with theory and the solution of the standard No-Time-Counter (NTC) method and its new variant, nearest neighbor scheme, using the DS1 code, is reported. Some higher moments beyond the usual moments were computed. The results of the fourth moment of the velocity distribution function in the homogeneous relaxation problem show that while both collision schemes produce identical results at an ample time, the initial relaxation process indicates the difference between the schemes. Even though the NTC schemes required a large number of particles per cell to produce the same results as the theory, the SBT scheme successfully simulates the solution using a low number of particles per cell.

1.
G. A.
Bird
, “
Approach to translational equilibrium in a rigid sphere gas
,”
Phys. Fluids
6
,
1518
(
1963
).
2.
G. A.
Bird
, “
Perception of numerical methods in rarefied gas dynamics
,” in
Rarefied Gas Dynamics: Theoretical and Computational Techniques
, edited by
E. P.
Muntz
,
D. P.
Weav
, and
D. H.
Capbell
(
AIAA
,
1989
),
vol. 118
, pp.
374
395
.
3.
M. A.
Gallis
,
J. R.
Torczynski
,
D. J.
Rader
, and
G. A.
Bird
, “
Convergence behavior of a new DSMC algorithm
,”
J. Comput. Phys.
228
,
4532
4548
(
2009
).
4.
G. A.
Bird
,
M. A.
Gallis
,
J. R.
Torczynski
, and
D. J.
Rader
, “
Accuracy and efficiency of the sophisticated direct simulation Monte Carlo algorithm for simulating noncontinuum gas flows
,”
Phys. Fluids
21
,
17103
(
2009
).
5.
M. A.
Gallis
and
J. R.
Torczynski
, “
Effect of collision-partner selection schemes on the accuracy and efficiency of the direct simulation Monte Carlo method
,”
Int. J. Numer. Methods Fluids
67
,
1057
1072
(
2011
).
6.
S. K.
Stefanov
, “
On the basic concepts of the direct simulation Monte Carlo method
,”
Phys. Fluids
31
,
067104
(
2019
).
7.
G. A.
Bird
, “Sophisticated DSMC,” in Notes prepared for a short course at DSMC07 meeting, Santa, Fe,
2007
.
8.
G. A.
Bird
,
The DSMC Method
(
CreateSpace Independent Publishing Platform
,
2013
).
9.
O. M.
Belotserkovskii
and
V. E.
Yanitskii
, “
The statistical particles-in-cells method for solving rarefied gas dynamics problems
,”
USSR Comput. Math. Math. Phys.
15
,
101
114
(
1975
).
10.
V.
Yanitskiy
, “
Operator approach to direct simulation Monte Carlo theory in rarefied gas dynamics
,” in
Proceedings of the 17th Symposium on Rarefied Gas Dynamics
(
1990
), pp.
770
777
.
11.
S. K.
Stefanov
, “
Particle Monte Carlo algorithms with small number of particles in grid cells
,” in
Numerical Methods and Applications, Lecture Notes in Computer Science
(
Springer
,
2011
), pp.
110
117
.
12.
S. K.
Stefanov
, “
On DSMC calculations of rarefied gas flows with small number of particles in cells
,”
SIAM J. Sci. Comput.
33
,
677
702
(
2011
).
13.
E.
Roohi
,
S.
Stefanov
,
A.
Shoja-Sani
, and
H.
Ejraei
, “
A generalized form of the Bernoulli Trial collision scheme in DSMC: Derivation and evaluation
,”
J. Comput. Phys.
354
,
476
492
(
2018
).
14.
A.
Shoja-sani
,
E.
Roohi
, and
S.
Stefanov
, “
Evaluation of the generalized Bernoulli trial-transient adaptive subcell (GBT-TAS) collision scheme in treating rarefied gas flows
,”
Comput. Fluids
213
,
104740
(
2020
).
15.
E.
Taheri
,
E.
Roohi
, and
S.
Stefanov
, “
On the convergence of the simplified Bernoulli trial collision scheme in rarefied Fourier flow
,”
Phys. Fluids
29
,
062003
(
2017
).
16.
A. V.
Bobylev
, “
Exact solutions of the Boltzmann equation
,”
Dokl. Akad. Nauk SSSR
225
(
6
),
1296
1299
(
1975
).
17.
M.
Krook
and
T. T.
Wu
, “
Formation of Maxwellian tails
,”
Phys. Rev. Lett.
36
,
1107
1109
(
1976
).
18.
A.
Bobylev
, “
The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules
,”
Sov. Sci. Rev., Sect. C
7
,
111
233
(
1988
).
19.
E.
Rathakrishnan
, “
Normal shock waves
,”
Applied Gas Dynamics
, 2nd ed. (
John Wiley and Sons
,
2019
), pp.
113
153
.
20.
G. A.
Bird
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
(
Clarendon Press
,
1994
).
21.
A.
Venkattraman
,
A. A.
Alexeenko
,
M. A.
Gallis
, and
M. S.
Ivanov
, “
A comparative study of no-time-counter and majorant collision frequency numerical schemes in DSMC
,”
AIP Conf. Proc.
1501
,
489
495
(
2012
).
22.
L. N.
Harnett
and
E. P.
Muntz
, “
Experimental investigation of normal shock wave velocity distribution functions in mixtures of argon and helium
,”
Phys. Fluids
15
,
565
572
(
1972
).
23.
M.
Mareschal
and
E.
Salomons
, “
Shock waves in gases using molecular dynamics and DSMC methods
,”
Transp. Theory Stat. Phys.
23
,
281
296
(
1994
).
24.
P.
Valentini
and
T. E.
Schwartzentruber
, “
Large-scale molecular dynamics simulations of normal shock waves in dilute argon
,”
Phys. Fluids
21
,
66101
(
2009
).
25.
A.
Munafò
,
E.
Torres
,
J.
Haack
,
I.
Gamba
, and
T.
Magin
, “
Investigation of nonequilibrium effects across normal shock waves by means of a spectral-Lagrangian Boltzmann solver
,” in
51st AIAA Aerospace Sciences Meeting
(
American Institute of Aeronautics and Astronautics
,
Reston, VA
,
2013
), p.
0305
.
26.
F. C.
Dias
and
F.
Sharipov
, “
The structure of shock waves propagating through heavy noble gases: Temperature dependence
,”
Shock Waves
(published online 2020).
27.
F.
Fei
,
H.
Liu
,
Z.
Liu
, and
J.
Zhang
, “
A benchmark study of kinetic models for shock waves
,”
AIAA J.
58
,
2596
2608
(
2020
).
28.
S.
Schlamp
and
B. C.
Hathorn
, “
Higher moments of the velocity distribution function in dense-gas shocks
,”
J. Comput. Phys.
223
,
305
315
(
2007
).
29.
V.
Garzó
and
A.
Santos
, “
Comparison between the Boltzmann and BGK equations for uniform shear flow
,”
Physica A
213
,
426
434
(
1995
).
30.
A.
Mahdavi
and
E.
Roohi
, “
A novel hybrid DSMC-Fokker Planck algorithm implemented to rarefied gas flows
,”
Vacuum
181
,
109736
(
2020
).
31.
V.
RezapourJaghargh
,
A.
Mahdavi
, and
E.
Roohi
, “
Shear-driven micro/nano flows simulation using Fokker Planck approach: Investigating accuracy and efficiency
,”
Vacuum
172
,
109065
(
2020
).
32.
E. Y.
Moghadam
,
E.
Roohi
, and
J. A.
Esfahani
, “
Heat transfer and fluid characteristics of rarefied flow in thermal cavities
,”
Vacuum
109
,
333
340
(
2014
).
33.
E.
Roohi
and
M.
Darbandi
, “
Recommendations on performance of parallel DSMC algorithm in solving subsonic nanoflows
,”
Appl. Math. Model.
36
,
2314
2321
(
2012
).
34.
J.
Meng
,
L.
Wu
,
J. M.
Reese
, and
Y.
Zhang
, “
Assessment of the ellipsoidal-statistical Bhatnagar–Gross–Krook model for force-driven Poiseuille flows
,”
J. Comput. Phys.
251
,
383
395
(
2013
).
35.
E.
Jun
,
M.
Pfeiffer
,
L.
Mieussens
, and
M. H.
Gorji
, “
Comparative study between cubic and ellipsoidal Fokker–Planck kinetic models
,”
AIAA J.
57
,
2524
2533
(
2019
).
36.
V.
Shahabi
,
T.
Baier
,
E.
Roohi
, and
S.
Hardt
, “
Thermally induced gas flows in ratchet channels with diffuse and specular boundaries
,”
Sci. Rep.
7
,
41412
(
2017
).
37.
A.
Lotfian
and
E.
Roohi
, “
Radiometric flow in periodically patterned channels: Fluid physics and improved configurations
,”
J. Fluid Mech.
860
,
544
576
(
2019
).
38.
A.
Lotfian
and
E.
Roohi
, “
Binary gas mixtures separation using microscale radiometric pumps
,”
Int. Commun. Heat Mass Transfer
121
,
105061
(
2021
).
39.
S.
Rafieenasab
,
E.
Roohi
, and
A.
Teymourtash
, “
Numerical analysis of nonlinear thermal stress flow between concentric elliptical cylinders
,”
Phys. Fluids
32
,
102007
(
2020
).
40.
B.
Goshayeshi
,
E.
Roohi
, and
S.
Stefanov
, “
A novel simplified bernoulli trials collision scheme in the direct simulation Monte Carlo with intelligence over particle distances
,”
Phys. Fluids
27
,
107104
(
2015
).
41.
T. D.
Holman
and
I. D.
Boyd
, “
Effects of continuum breakdown on hypersonic aerothermodynamics for reacting flow
,”
Phys. Fluids
23
(
2
),
027101
(
2011
).
42.
A. J.
Lofthouse
,
I. D.
Boyd
, and
M. J.
Wright
, “
Effects of continuum breakdown on hypersonic aerothermodynamics
,”
Phys. Fluids
19
,
027105
(
2007
).
43.
H.
Struchtrup
, “
Macroscopic transport equations for rarefied gas flows
,” in
Macroscopic Transport Equations Rarefied Gas Flows
(
Springer
,
2005
), pp.
145
160
.
You do not currently have access to this content.