Experimental and numerical investigations are performed to provide an assessment of the transport behavior of an ultrasonic oscillatory air–water two-phase flow in a microchannel. The flow exhibits highly unsteady behavior as the water and air interact with each other during the vibration cycles, making it significantly different from the well-studied steady flow in microchannels. The computational fluid dynamics (CFD) modeling is realized by combing the turbulence Reynolds-averaged Navier–Stokes kω model with the phase-field method in the Eulerian framework to resolve the dynamics of the two-phase flow. The numerical results are qualitatively validated by the experiment. Through parametric studies achieved by CFD simulation, we specifically examined the effects of vibration conditions (i.e., frequency and amplitude), microchannel taper angle, and wall surface contact angle (i.e., wettability) on the flow rate through the microchannel. The configuration for the highest flow rate is identified, which will help optimize the efficiency of a novel ultrasonic drying device. The described CFD modeling approach may also advance the potential applications where oscillatory or general unsteady microchannel two-phase flows may be present.

1.
S. G.
Kandlikar
,
S.
Garimella
,
D.
Li
,
S.
Colin
, and
M. R.
King
,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
(
Elsevier
,
2006
).
2.
K.
Sharp
,
R.
Adrian
,
J.
Santiago
, and
J.
Molho
, “
Liquid flows in microchannels
,”
MEMS: Introduction and Fundamentals
(
CRC Press
,
2005
).
3.
M.
Toner
and
D.
Irimia
, “
Blood-on-a-chip
,”
Annu. Rev. Biomed. Eng.
7
,
77
103
(
2005
).
4.
A. A. S.
Bhagat
,
S. S.
Kuntaegowdanahalli
, and
I.
Papautsky
, “
Enhanced particle filtration in straight microchannels using shear-modulated inertial migration
,”
Phys. Fluids
20
(
10
),
101702
(
2008
).
5.
Z.
Pan
,
R.
Zhang
,
C.
Yuan
, and
H.
Wu
, “
Direct measurement of microscale flow structures induced by inertial focusing of single particle and particle trains in a confined microchannel
,”
Phys. Fluids
30
(
10
),
102005
(
2018
).
6.
J.
Richardson
and
J.
Coulson
, “
Transport processes in microfluidic applications
,”
Coulson and Richardson's Chemical Engineering
, 7th ed. (
Elsevier
,
2018
), pp.
529
546
.
7.
D. S.
Kim
,
K. C.
Lee
,
T. H.
Kwon
, and
S. S.
Lee
, “
Micro-channel filling flow considering surface tension effect
,”
J Micromech. Microeng.
12
(
3
),
236
246
(
2002
).
8.
S.
Sutera
, “
The history of Poiseuille's law
,”
Annu. Rev. Fluid Mech.
25
,
1
19
(
1993
).
9.
S.
Mohith
,
P. N.
Karanth
, and
S. M.
Kulkarni
, “
Recent trends in mechanical micropumps and their applications: A Review
,”
Mechatronics
60
,
34
55
(
2019
).
10.
B.
Fan
and
F.
Hussain
, “
Simulation of a piezoelectrically actuated valveless micropump
,”
Smart Mater Struct.
14
(
2
),
400
405
(
2005
).
11.
R.
Gidde
,
P.
Pawar
,
B.
Ronge
, and
V.
Dhamgaye
, “
Design optimization of an electromagnetic actuation based valveless micropump for
,”
Drug Delivery Appl. Microsyst. Technol.
25
,
509
(
2019
).
12.
K.
Jo
,
Y.-L.
Chen
,
J. J.
de Pablo
, and
D. C.
Schwartz
, “
Elongation migration single DNA molecules microchannels using oscillatory shear flows
,”
Lab Chip
9
(
16
),
2348
2355
(
2009
).
13.
C.
Dietsche
,
B. R.
Mutlu
,
J. F.
Edd
,
P.
Koumoutsakos
, and
M.
Toner
, “
Dynamic particle ordering in oscillatory inertial microfluidics
,”
Microfluid. Nanofluid.
23
(
6
),
1
8
(
2019
).
14.
A.
Lafzi
,
A. H.
Raffiee
, and
S.
Dabiri
, “
Inertial migration of a deformable capsule in an oscillatory flow in a microchannel
,”
Phys. Rev. E
102
(
6
),
063110
(
2020
).
15.
S. H.
Sadek
and
F. T.
Pinho
, “
Electro-osmotic oscillatory flow of viscoelastic fluids in a microchannel
,”
J. Nonnewton Fluid Mech.
266
,
46
58
(
2019
).
16.
M.
Karbaschi
,
A.
Javadi
,
D.
Bastani
, and
R.
Miller
, “
High frequency oscillatory flow in micro channels
,”
Colloids Surf. A
460
,
355
360
(
2014
).
17.
C. J.
Morris
and
F. K.
Forster
, “
Oscillatory flow in microchannels: comparison of exact and approximate impedance models with experiments
,”
Exp. Fluids
36
(
6
),
928
937
(
2004
).
18.
V. G.
Niño
,
P. S.
Hrnjak
, and
T. A.
Newell
,
Characterization of Two-Phase Flow in Microchannels
(
Air Conditioning and Refrigeration Center, College of Engineering, University of Illinois at Urbana-Champaign
,
2002
).
19.
A.
Kawahara
,
P. Y.
Chung
, and
M.
Kawaji
, “
Investigation of two-phase flow pattern, void fraction and pressure drop in a microchannel
,”
Int. J. Multiphase Flow
28
(
9
),
1411
1435
(
2002
).
20.
W.
Qu
and
I.
Mudawar
, “
Transport phenomena in two-phase micro-channel heat sinks
,”
J. Electron Packag. Trans. ASME
126
(
2
),
213
224
(
2004
).
21.
R.
Revellin
and
J. R.
Thome
, “
Experimental investigation of R-134a and R-245fa two-phase flow in microchannels for different flow conditions
,”
Int. J. Heat Fluid Flow
28
,
63
71
(
2007
).
22.
K. A.
Triplett
,
S. M.
Ghiaasiaan
,
S. I.
Abdel-Khalik
, and
D. L.
Sadowski
, “
Gas-liquid two-phase flow in microchannels part I: Two-phase flow patterns
,”
Int. J. Multiphase Flow
25
(
3
),
377
394
(
1999
).
23.
J.
Yue
,
L.
Luo
,
Y.
Gonthier
,
G.
Chen
, and
Q.
Yuan
, “
An experimental investigation of gas-liquid two-phase flow in single microchannel contactors
,”
Chem. Eng. Sci.
63
,
4189
4202
(
2008
).
24.
M. A.
Redo
,
J.
Jeong
,
N.
Giannetti
 et al, “
Characterization of two-phase flow distribution in microchannel heat exchanger header for air-conditioning system
,”
Exp. Therm. Fluid Sci.
106
,
183
193
(
2019
).
25.
C.
Keepaiboon
and
S.
Wongwises
, “
Two-phase flow patterns and heat transfer characteristics of R134a refrigerant during flow boiling in a single rectangular micro-channel
,”
Exp. Therm. Fluid Sci.
66
,
36
45
(
2015
).
26.
A.
Mehdizadeh
,
S. A.
Sherif
, and
W. E.
Lear
, “
CFD modeling of two-phase gas-liquid slug flow using VOF method in microchannels
,” in
Proceedings of the ASME 2009 Fluids Engineering Division Summer Meeting
(
2009
).
27.
A.
Mehdizadeh
,
S. A.
Sherif
, and
W. E.
Lear
, “
Numerical simulation of thermofluid characteristics of two-phase slug flow in microchannels
,”
Int. J. Heat Mass Transfer
54
(
15–16
),
3457
3465
(
2011
).
28.
N.
Takada
,
J.
Matsumoto
, and
S.
Matsumoto
, “
Numerical simulation of two-phase fluid motion in microchannel based on phase-field model
,”
11th World Congress on Computational Mechanics
(
2014
), pp.
3895
3903
.
29.
Q.
Lou
,
M.
Yang
, and
H.
Xu
, “
Numerical investigations of gas–liquid two-phase flows in microchannels
,”
Proc. Inst. Mech. Eng., Part C
232
(
3
),
466
476
(
2018
).
30.
K.
Panda
,
T.
Hirokawa
, and
L.
Huang
, “
Design study of microchannel heat exchanger headers using experimentally validated multiphase flow CFD simulation
,”
Appl. Therm. Eng.
178
,
115585
(
2020
).
31.
A.
Serizawa
,
Z.
Feng
, and
Z.
Kawara
, “
Two-phase flow in microchannels
,”
Exp. Therm. Fluid Sci.
369
(
3
),
87
93
(
2002
).
32.
A. M.
Momen
,
E.
Kokou
,
P.
Bansal
,
K. R.
Gluesenkamp
, and
O.
Abdelaziz
, “
Preliminary investigation of novel direct contact ultrasonic fabric drying
,” in:
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
,
Houston, TX,
2015.
33.
C.
Peng
,
S.
Ravi
,
V. K.
Patel
,
A. M.
Momen
, and
S.
Moghaddam
, “
Physics of direct-contact ultrasonic cloth drying process
,”
Energy
125
,
498
(
2017
).
34.
C.
Peng
,
A. M.
Momen
, and
S.
Moghaddam
, “
An energy-efficient method for direct-contact ultrasonic cloth drying
,”
Energy
138
,
133
(
2017
).
35.
V. K.
Patel
,
F. K.
Reed
,
R.
Kisner
,
C.
Peng
,
S.
Moghaddam
, and
A. M.
Momen
, “
Novel experimental study of fabric drying using direct-contact ultrasonic vibration
,”
J. Therm. Sci. Eng. Appl.
11
(
2
),
021008
(
2019
).
36.
E. D.
Dupuis
, “
Electroelastic modeling and testing of direct contact ultrasonic clothes drying systems
,” Doctoral dissertation (Virginia Tech,
2020
).
37.
B.
Vukasinovic
,
M. K.
Smith
, and
A.
Glezer
, “
Mechanisms of free-surface breakup in vibration-induced liquid atomization
,”
Phys. Fluids
19
(
1
),
012104
(
2007
).
38.
E. D.
Dupuis
,
A. M.
Momen
,
V. K.
Patel
, and
S.
Shahab
, “
Electroelastic investigation of drying rate in the direct contact ultrasonic fabric dewatering process
,”
Appl. Energy
235
,
451
462
(
2019
).
39.
E. D.
Dupuis
,
A. M.
Momen
,
V. K.
Patel
, and
S.
Shahab
, “
Coupling of electroelastic dynamics and direct contact ultrasonic drying formulation for annular piezoelectric bimorph transducers
,”
Smart Mater. Struct.
29
(
4
),
045027
(
2020
).
40.
G.
Rastiello
,
S.
Leclaire
,
R.
Belarbi
, and
R.
Bennacer
, “
Unstable two-phase flow rate in micro-channels and cracks under imposed pressure difference
,”
Int. J. Multiphase Flow
77
,
131
141
(
2015
).
41.
Q. Q.
Xiong
,
Z.
Chen
,
S. W.
Li
,
Y. D.
Wang
, and
J. H.
Xu
, “
Micro-PIV measurement and CFD simulation of flow field and swirling strength during droplet formation process in a coaxial microchannel
,”
Chem. Eng. Sci.
185
,
157
167
(
2018
).
42.
COMSOL,
CFD Module User 's Guide
,” COMSOL Multiphysics 1–710 (
2019
).
43.
D. C.
Wilcox
,
Turbulence Modeling for CFD
, 2nd ed. (
DCW Industries
,
1998
).
44.
A.
Elmiligui
,
K. S.
Abdol-Hamid
,
S. J.
Massey
, and
S. P.
Pao
, “
Numerical study of flow past a circular cylinder using RANS, hybrid RANS/LES and PANS formulations
,”
Collect Tech Pap - AIAA Appl Aerodyn Conf.
2004
;
1
:
393
-
409
.
45.
F. R.
Menter
,
J. C.
Ferreira
, and
T.
Esch
, “
The SST turbulence model with improved wall treatment for heat transfer predictions in gas turbines
,”
Proceedings of the International Gas Turbine Congress
(
1992
), pp.
1
7
.
46.
S.
Mirjalili
,
S. S.
Jain
, and
M.
Dodd
, “
Interface-capturing methods for two-phase flows: An overview and recent developments
,”
Ctr. Turb. Res. Ann. Res. Briefs
2017
,
117
135
(
2017
).
47.
R.
Kobayashi
, “
A brief introduction to phase field method
,”
AIP Conf. Proc.
1270
,
282
291
(
2010
).
48.
J. D.
van der Waals
, “
The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density
,”
J. Stat. Phys.
20
(
2
),
200
244
(
1979
).
49.
P.
Yue
,
C.
Zhou
, and
J. J.
Feng
, “
Sharp-interface limit of the cahn-hilliard model for moving contact lines
,”
J. Fluid Mech.
645
,
279
294
(
2010
).
50.
J. J.
Xu
and
W.
Ren
, “
A level-set method for two-phase flows with moving contact line and insoluble surfactant
,”
J. Comput. Phys.
263
,
71
90
(
2014
).
51.
P.
Yue
,
J. J.
Feng
,
C.
Liu
, and
J.
Shen
, “
A diffuse-interface method for simulating two-phase flows of complex fluids
,”
J. Fluid Mech.
515
,
293
317
(
2004
).
52.
J.
Shen
,
X.
Yang
, and
Q.
Wang
, “
Mass and volume conservation in phase field models for binary fluids
,”
Commun. Comput. Phys.
13
(
4
),
1045
1065
(
2013
).
53.
V. V.
Khatavkar
,
P. D.
Anderson
, and
H. E. H.
Meijer
, “
On scaling of diffuse-interface models
,”
Chem. Eng. Sci.
61
(
8
),
2364
2378
(
2006
).
54.
P.
Yue
,
C.
Zhou
,
J. J.
Feng
,
C. F.
Ollivier-Gooch
, and
H. H.
Hu
, “
Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing
,”
J. Comput. Phys.
219
(
1
),
47
67
(
2006
).
55.
A. C.
Ashwood
,
S. J.
Vanden Hogen
,
M. A.
Rodarte
 et al, “
A multiphase, micro-scale PIV measurement technique for liquid film velocity measurements in annular two-phase flow
,”
Int. J. Multiphase Flow
68
,
27
39
(
2015
).
You do not currently have access to this content.