In this work, a finite-difference-based axisymmetric off-lattice Boltzmann solver is developed to simulate blood flow through pathological arteries. The proposed solver handles arterial geometries using a body-fitted curvilinear mesh. The axisymmetric nature of the flow and the non-Newtonian behavior of blood are incorporated using external source terms. The solver is verified for spatially developing pulsatile inflow through an abdominal aortic aneurysm using reference data from literature. Thereafter, the effects of amplitude and frequency of an irregular-shaped stenosed artery are systematically studied. The results are analyzed using the instantaneous vorticity contours, streamlines, cycle-averaged and phase-averaged profiles of wall shear stress (WSS), and oscillatory shear index. Further, the correlation between the luminal surface concentration (LSC) of low-density lipoproteins and the WSS is studied to predict potential disease initiation and progression locations. It is noted that an increase in the amplitude of irregularity of the stenosis increases the magnitudes of maxima and minima of WSS profiles without altering their locations. On the other hand, an increase in the frequency of irregularity increases the magnitudes of WSS extrema while bringing the peaks closer together. Further, a positive correlation is found between the degree of irregularity as well as the number of locations of elevated LSC. The presence of irregularity creates additional vortices in the upstream section of the stenosis. Both the upstream and downstream sections of the stenosis are subjected to the opposing shear-layers with higher magnitudes, which may lead to endothelial damage. Finally, the shear-thinning effect of blood is studied using the power-law model. The magnitudes of the maxima and minima in WSS have a lower value for the shear-thinning model than the Newtonian case. Also, the vortices that were produced in the upstream section because of the irregularity get suppressed by the shear-thinning effect of the blood.

1.
A. J.
Lusis
, “
Atherosclerosis
,”
Nature
407
,
233
241
(
2000
).
2.
M.
Texon
,
A. M.
Imparato
, and
M.
Helpern
, “
The role of vascular dynamics in the development of atherosclerosis
,”
J. Am. Med. Assoc.
194
,
1226
1230
(
1965
).
3.
D. L.
Fry
, “
Acute vascular endothelial changes associated with increased blood velocity gradients
,”
Circ. Res.
22
,
165
197
(
1968
).
4.
R. M.
Nerem
and
W. A.
Seed
, “
An in vivo study of aortic flow disturbances
,”
Cardiovasc. Res.
6
,
1
14
(
1972
).
5.
C. G.
Caro
,
J. M.
Fitz-Gerald
,
R. C.
Schroter
,
M. J.
Lighthill
, and
M. G. P.
Stoker
, “
Atheroma and arterial wall shear - Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis
,”
Proc. R. Soc. London, Ser. B
177
,
109
133
(
1971
).
6.
D.
Liepsch
, “
An introduction to biofluid mechanics–Basic models and applications
,”
J. Biomech.
35
,
415
435
(
2002
).
7.
D. N.
Ku
,
D. P.
Giddens
,
C. K.
Zarins
, and
S.
Glagov
, “
Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress
,”
Arteriosclerosis
5
,
293
302
(
1985
).
8.
M.
Siouffi
,
V.
Deplano
, and
R.
Pélissier
, “
Experimental analysis of unsteady flows through a stenosis
,”
J. Biomech.
31
,
11
19
(
1997
).
9.
N.
Freidoonimehr
,
R.
Chin
,
A.
Zander
, and
M.
Arjomandi
, “
An experimental model for pressure drop evaluation in a stenosed coronary artery
,”
Phys. Fluids
32
,
021901
(
2020
).
10.
J.
Misra
and
S.
Chakravarty
, “
Flow in arteries in the presence of stenosis
,”
J. Biomech.
19
,
907
918
(
1986
).
11.
S.
Cavalcanti
, “
Hemodynamics of an artery with mild stenosis
,”
J. Biomech.
28
,
387
399
(
1995
).
12.
C.
Tu
,
M.
Deville
,
L.
Dheur
, and
L.
Vanderschuren
, “
Finite element simulation of pulsatile flow through arterial stenosis
,”
J. Biomech.
25
,
1141
1152
(
1992
).
13.
G.
Zendehbudi
and
M.
Moayeri
, “
Comparison of physiological and simple pulsatile flows through stenosed arteries
,”
J. Biomech.
32
,
959
965
(
1999
).
14.
Q.
Long
,
X.
Xu
,
K.
Ramnarine
, and
P.
Hoskins
, “
Numerical investigation of physiologically realistic pulsatile flow through arterial stenosis
,”
J. Biomech.
34
,
1229
1242
(
2001
).
15.
W.
Liao
,
T. S.
Lee
, and
H. T.
Low
, “
Numerical studies of physiological pulsatile flow through constricted tube
,”
Int. J. Numer. Methods Heat Fluid Flow
14
,
689
713
(
2004
).
16.
A.
Bit
and
H.
Chattopadhay
, “
Numerical investigations of pulsatile flow in stenosed artery
,”
Acta Bioeng. Biomech.
16
,
33
44
(
2014
).
17.
S. S.
Varghese
,
S. H.
Frankel
, and
P. F.
Fischer
, “
Direct numerical simulation of stenotic flows. Part 2. Pulsatile flow
,”
J. Fluid Mech.
582
,
281
318
(
2007
).
18.
X.
Bin
and
Z.
Yuwen
, “
Numerical simulation of pulsatile turbulent flow in tapering stenosed arteries
,”
Int. J. Numer. Methods Heat Fluid Flow
19
,
561
573
(
2009
).
19.
M. M.
Molla
,
B.-C.
Wang
, and
D. C. S.
Kuhn
, “
Numerical study of pulsatile channel flows undergoing transition triggered by a modelled stenosis
,”
Phys. Fluids
24
,
121901
(
2012
).
20.
A.
Bit
and
H.
Chattopadhyay
, “
Assessment of rheological models for prediction of transport phenomena in stenosed artery
,”
Prog. Comput. Fluid Dyn
.
14
,
363
374
(
2014
).
21.
W.
Choi
,
J. H.
Park
,
H.
Byeon
, and
S. J.
Lee
, “
Flow characteristics around a deformable stenosis under pulsatile flow condition
,”
Phys. Fluids
30
,
011902
(
2018
).
22.
A.
Bit
and
H.
Chattopadhay
, “
Acute aneurysm is more critical than acute stenoses in blood vessels: A numerical investigation using stress markers
,”
BioNanoScience
8
,
329
336
(
2018
).
23.
M. D.
Jeronimo
and
D. E.
Rival
, “
Particle residence time in pulsatile post-stenotic flow
,”
Phys. Fluids
32
,
045110
(
2020
).
24.
A.
Bit
,
A.
Alblawi
,
H.
Chattopadhyay
,
Q. A.
Quais
,
A. C.
Benim
,
M.
Rahimi-Gorji
, and
H.-T.
Do
, “
Three dimensional numerical analysis of hemodynamic of stenosed artery considering realistic outlet boundary conditions
,”
Comput. Methods Programs Biomed.
185
,
105163
(
2020
).
25.
L. H.
Back
,
Y. I.
Cho
,
D. W.
Crawford
, and
R. F.
Cuffel
, “
Effect of mild atherosclerosis on flow resistance in a coronary artery casting of man
,”
J. Biomech. Eng.
106
,
48
53
(
1984
).
26.
K.
Haldar
, “
Effects of the shape of stenosis on the resistance to blood flow through an artery
,”
Bull. Math. Biol.
47
,
545
550
(
1985
).
27.
P. R.
Johnston
and
D.
Kilpatrick
, “
Mathematical modelling of flow through an irregular arterial stenosis
,”
J. Biomech.
24
,
1069
1077
(
1991
).
28.
H. I.
Andersson
,
R.
Halden
, and
T.
Glomsaker
, “
Effects of surface irregularities on flow resistance in differently shaped arterial stenoses
,”
J. Biomech.
33
,
1257
1262
(
2000
).
29.
S.
Chakravarty
,
P. K.
Mandal
, and
Sarifuddin
, “
Effect of surface irregularities on unsteady pulsatile flow in a compliant artery
,”
Int. J. Non-Linear Mech.
40
,
1268
1281
(
2005
).
30.
A.
Yakhot
,
L.
Grinberg
, and
N.
Nikitin
, “
Modeling rough stenoses by an immersed-boundary method
,”
J. Biomech.
38
,
1115
1127
(
2005
).
31.
P. K.
Mandal
,
S.
Chakravarty
, and
A.
Mandal
, “
Numerical study of the unsteady flow of non-Newtonian fluid through differently shaped arterial stenoses
,”
Int. J. Comput. Math.
84
,
1059
1077
(
2007
).
32.
Sarifuddin
,
S.
Chakravarty
,
P. K.
Mandal
, and
G. C.
Layek
, “
Numerical simulation of unsteady generalized Newtonian blood flow through differently shaped distensible arterial stenoses
,”
J. Med. Eng. Technol.
32
,
385
399
(
2008
).
33.
N.
Mustapha
,
P. K.
Mandal
,
P. R.
Johnston
, and
N.
Amin
, “
A numerical simulation of unsteady blood flow through multi-irregular arterial stenoses
,”
Appl. Math. Modell.
34
,
1559
1573
(
2010
).
34.
A.
Bardow
,
I. V.
Karlin
, and
A. A.
Gusev
, “
General characteristic-based algorithm for off-lattice Boltzmann simulations
,”
Europhys. Lett.
75
,
434
440
(
2006
).
35.
X.
He
and
L.-S.
Luo
, “
Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation
,”
Phys. Rev. E
56
,
6811
6817
(
1997
).
36.
Z.
Guo
and
T. S.
Zhao
, “
Explicit finite-difference lattice Boltzmann method for curvilinear coordinates
,”
Phys. Rev. E
67
,
066709
(
2003
).
37.
P. L.
Bhatnagar
,
E. P.
Gross
, and
M.
Krook
, “
A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems
,”
Phys. Rev.
94
,
511
525
(
1954
).
38.
S.
Srivastava
,
P.
Perlekar
,
J. H. M. t. T.
Boonkkamp
,
N.
Verma
, and
F.
Toschi
, “
Axisymmetric multiphase lattice Boltzmann method
,”
Phys. Rev. E
88
,
013309
(
2013
).
39.
M.
Sakthivel
and
K.
Anupindi
, “
Axisymmetric compact finite-difference lattice Boltzmann method for blood flow simulations
,”
Phys. Rev. E
100
,
043307
(
2019
).
40.
X.
He
and
L.-S.
Luo
, “
Lattice Boltzmann model for the incompressible Navier–Stokes equation
,”
J. Stat. Phys.
88
,
927
944
(
1997
).
41.
H.
Chen
,
S.
Chen
, and
W. H.
Matthaeus
, “
Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method
,”
Phys. Rev. A
45
,
R5339
R5342
(
1992
).
42.
T.
Lee
and
C.-L.
Lin
, “
A characteristic Galerkin method for discrete Boltzmann equation
,”
J. Comput. Phys.
171
,
336
356
(
2001
).
43.
T.
Lee
and
C.-L.
Lin
, “
An Eulerian description of the streaming process in the lattice Boltzmann equation
,”
J. Comput. Phys.
185
,
445
471
(
2003
).
44.
X.
He
and
L.-S.
Luo
, “
A priori derivation of the lattice Boltzmann equation
,”
Phys. Rev. E
55
,
R6333
R6336
(
1997
).
45.
S.
Chen
and
G. D.
Doolen
, “
Lattice Boltzmann method for fluid flows
,”
Annu. Rev. Fluid Mech.
30
,
329
364
(
1998
).
46.
X.
He
,
S.
Chen
, and
G. D.
Doolen
, “
A novel thermal model for the lattice Boltzmann method in incompressible limit
,”
J. Comput. Phys.
146
,
282
300
(
1998
).
47.
R.
Mei
and
W.
Shyy
, “
On the finite-difference-based lattice Boltzmann method in curvilinear coordinates
,”
J. Comput. Phys.
143
,
426
448
(
1998
).
48.
K.
Hejranfar
and
E.
Ezzatneshan
, “
Implementation of a high-order compact finite-difference lattice Boltzmann method in generalized curvilinear coordinates
,”
J. Comput. Phys.
267
,
28
49
(
2014
).
49.
G.-Y.
Suh
,
A. S.
Les
,
A. S.
Tenforde
,
S. C.
Shadden
,
R. L.
Spilker
,
J. J.
Yeung
,
C. P.
Cheng
,
R. J.
Herfkens
,
R. L.
Dalman
, and
C. A.
Taylor
, “
Hemodynamic changes quantified in abdominal aortic aneurysms with increasing exercise intensity using MR exercise imaging and image-based computational fluid dynamics
,”
Ann. Biomed. Eng.
39
,
2186
2202
(
2011
).
50.
J. R.
Womersley
, “
Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known
,”
J. Physiol.
127
,
553
563
(
1955
).
51.
H.
Haibo
, “
Axisymmetric and three-dimensional lattice Boltzmann models and their applications in fluid flows
,” Ph.D. thesis (
National University of Singapore
,
2007
).
52.
K.
Hejranfar
and
E.
Ezzatneshan
, “
A high-order compact finite-difference lattice Boltzmann method for simulation of steady and unsteady incompressible flows
,”
Int. J. Numer. Methods Fluids
75
,
713
746
(
2014
).
53.
S. S.
Gopalakrishnan
,
B.
Pier
, and
A.
Biesheuvel
, “
Global stability analysis of flow through a fusiform aneurysm: Steady flows
,”
J. Fluid Mech.
752
,
90
106
(
2014
).
54.
S. S.
Gopalakrishnan
, “
Dynamics and stability of flow through abdominal aortic aneurysms
,” Ph.D. thesis (
Université Claude Bernard - Lyon I
,
2014
).
55.
S.
Choudhury
,
K.
Anupindi
, and
B. S. V.
Patnaik
, “
Influence of wall shear stress and geometry on the lumen surface concentration of low density lipoprotein in a model abdominal aortic aneurysm
,”
Phys. Fluids
31
,
011901
(
2019
).
56.
C.-H.
Wang
and
J.-R.
Ho
, “
A lattice Boltzmann approach for the non-Newtonian effect in the blood flow
,”
Comput. Math. Appl.
62
,
75
86
(
2011
).
57.
M.
Grasinger
,
S.
Overacker
, and
J.
Brigham
, “
Numerical investigation of the accuracy, stability, and efficiency of lattice Boltzmann methods in simulating non-Newtonian flow
,”
Comput. Fluids
166
,
253
274
(
2018
).
You do not currently have access to this content.