A conventional invasive catheterization procedure is currently used to detect atherosclerotic severity in coronary arteries. However, it is still challenging to measure multiple consecutive stenoses (MCS) in coronary main arteries, a severe condition, by using the invasive method. In this paper, we report important hemodynamic properties such as wall shear stress (WSS) and velocity magnitude (VM) across different luminal areas of coronary stenosis in patient-based right coronary artery models of MCS using pulsatile heart flow simulations. The hemodynamic factors in coronary blood flow simulations of different degrees of stenosis indicated a relationship between the proximal moderate stenosis and distal severe stenosis models. The results show the physical effects of different hemodynamic factors including VM, mean arterial pressure difference, WSS, and virtual fractional flow reserve (vFFR), which allow for predicting the physiological computation in the MCS artery severity conditions. This study identifies the fundamental physics of coronary plaque with MCS and indicates the impact of these factors on vFFR measurements. These findings provide insights into and improvement of the pathophysiological assessment of MCS. The results reveal hemodynamic properties, which can be used to diagnose coronary irregularities using a visualization method.

1.
K. E.
Hoque
,
M.
Ferdows
,
S.
Sawall
, and
E. E.
Tzirtzilakis
, “
The effect of hemodynamic parameters in patient-based coronary artery models with serial stenoses: Normal and hypertension cases
,”
Comput. Methods Biomech. Biomed. Eng.
23
(
9
),
467
475
(
2020
).
2.
N. H. J.
Pijls
 et al, “
Coronary pressure measurement to assess the hemodynamic significance of serial stenoses within one coronary artery: Validation in humans
,”
Circulation
102
(
19 SUPPL
),
2371
2377
(
2000
).
3.
S.
Ju
and
L.
Gu
, “
Hemodynamic interference of serial stenoses and its impact on FFR and iFR measurements
,”
Appl. Sci.
9
(
2
),
279
(
2019
).
4.
J. M.
Zhang
 et al, “
Simplified models of non-invasive fractional flow reserve based on CT images
,”
PLoS One
11
(
5
),
e0153070
(
2016
).
5.
N.
Freidoonimehr
,
R.
Chin
,
A.
Zander
, and
M.
Arjomandi
, “
An experimental model for pressure drop evaluation in a stenosed coronary artery
,”
Phys. Fluids
32
(
2
),
021901
(
2020
).
6.
L.
Papamanolis
 et al, “
Myocardial perfusion simulation for coronary artery disease: A coupled patient-specific multiscale model
,”
Ann. Biomed. Eng.
(published online) (
2020
).
7.
P. D.
Morris
 et al, “
Computational fluid dynamics modelling in cardiovascular medicine
,”
Heart
102
(
1
),
18
28
(
2016
).
8.
B. L.
Nørgaard
 et al, “
Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: The NXT trial (Analysis of coronary blood flow using CT angiography: Next steps)
,”
J. Am. Coll. Cardiol.
63
(
12
),
1145
1155
(
2014
).
9.
B.
Liu
and
D.
Tang
, “
Influence of distal stenosis on blood flow through coronary serial stenoses: A numerical study
,”
Int. J. Comput. Methods
16
(
3
),
1842003
1842011
(
2019
).
10.
S.
Li
 et al, “
Numerical and experimental investigations of the flow–pressure relation in multiple sequential stenoses coronary artery
,”
Int. J. Cardiovasc. Imaging
33
(
7
),
1083
1088
(
2017
).
11.
S.
Beier
 et al, “
Impact of bifurcation angle and other anatomical characteristics on blood flow—A computational study of non-stented and stented coronary arteries
,”
J. Biomech.
49
(
9
),
1570
(
2016
).
12.
N.
Zaman
,
M.
Ferdows
,
M. A.
Xenos
,
K. E.
Hoque
, and
E. E.
Tzirtzilakis
, “
Effect of angle bifurcation and stenosis in coronary arteries: An idealized model study
,”
BioMed Res. J.
4
(
3
),
214
228
(
2020
).
13.
A.
Passos
,
J. M.
Sherwood
,
E.
Kaliviotis
,
R.
Agrawal
,
C.
Pavesio
, and
S.
Balabani
, “
The effect of deformability on the microscale flow behavior of red blood cell suspensions
,”
Phys. Fluids
31
(
9
),
091903
(
2019
).
14.
R.
Mittal
 et al, “
Computational modeling of cardiac hemodynamics: Current status and future outlook
,”
J. Comput. Phys.
305
,
1065
1082
(
2016
).
15.
U.
Siebert
 et al, “
Improving the quality of percutaneous revascularisation in patients with multivessel disease in Australia: Cost-effectiveness, public health implications, and budget impact of FFR-guided PCI
,”
Heart, Lung Circ.
23
(
6
),
527
533
(
2014
).
16.
J. G.
Myers
,
J. A.
Moore
,
M.
Ojha
,
K. W.
Johnston
, and
C. R.
Ethier
, “
Factors influencing blood flow patterns in the human right coronary artery
,”
Ann. Biomed. Eng.
29
(
2
),
109
120
(
2001
).
17.
F. A.
Alwawi
,
H. T.
Alkasasbeh
,
A. M.
Rashad
, and
R.
Idris
, “
MHD natural convection of sodium alginate Casson nanofluid over a solid sphere
,”
Results Phys.
16
,
102818
(
2020
).
18.
F. A.
Alwawi
,
H. T.
Alkasasbeh
,
A. M.
Rashad
, and
R.
Idris
, “
Heat transfer analysis of ethylene glycol-based Casson nanofluid around a horizontal circular cylinder with MHD effect
,”
Proc. Inst. Mech. Eng., Part C
234
(
13
),
2569
2580
(
2020
).
19.
G.
Palani
and
I. A.
Abbas
, “
Free convection MHD flow with thermal radiation from an impulsively-started vertical plate
,”
Nonlinear Anal.: Modell. Control
14
(
1
),
73
84
(
2009
).
20.
S.
Kamangar
 et al, “
Patient-specific 3D hemodynamics modelling of left coronary artery under hyperemic conditions
,”
Med. Biol. Eng. Comput.
55
(
8
),
1451
1461
(
2017
).
21.
K. K. L.
Wong
,
J.
Wu
,
G.
Liu
,
W.
Huang
, and
D. N.
Ghista
, “
Coronary arteries hemodynamics: Effect of arterial geometry on hemodynamic parameters causing atherosclerosis
,”
Med. Biol. Eng. Comput.
58
(
8
),
1831
1843
(
2020
).
22.
S. H.
Rambhia
 et al, “
Microcalcifications increase coronary vulnerable plaque rupture potential: A patient-based micro-CT fluid-structure interaction study
,”
Ann. Biomed. Eng.
40
(
7
),
1443
1454
(
2012
).
23.
D. B. X.
Liang
,
M.
Xenos
,
Y.
Alemu
,
S. H.
Rambhia
,
I.
Lavi
,
R.
Kornowski
,
L.
Gruberg
, and
S.
Einav
, “
Biomechanical factors in coronary vulnerable plaques risk of rupture: Intravascular ultrasound-based patient specific fluid structure interaction studies
,”
Coron. Artery Dis.
24
(
2
),
75
87
(
2013
).
24.
I.
Abbas
, “
Natural frequencies of a poroelastic hollow cylinder
,”
Acta Mech.
186
(
1–4
),
229
237
(
2006
).
25.
C.
Shi
 et al, “
A study of noninvasive fractional flow reserve derived from a simplified method based on coronary computed tomography angiography in suspected coronary artery disease
,”
Biomed. Eng. Online
16
(
1
),
1
15
(
2017
).
26.
H.
Takagi
 et al, “
Optimized interpretation of fractional flow reserve derived from computed tomography: Comparison of three interpretation methods
,”
J. Cardiovasc. Comput. Tomogr.
13
(
2
),
134
(
2019
).
27.
L.
Zhong
,
J. M.
Zhang
,
B.
Su
,
R. S.
Tan
,
J. C.
Allen
, and
G. S.
Kassab
, “
Application of patient-specific computational fluid dynamics in coronary and intra-cardiac flow simulations: Challenges and opportunities
,”
Front. Physiol.
9
,
742
(
2018
).
28.
F. A.
Alwawi
,
H. T.
Alkasasbeh
,
A. M.
Rashad
, and
R.
Idris
, “
A numerical approach for the heat transfer flow of carboxymethyl cellulose-water based Casson nanofluid from a solid sphere generated by mixed convection under the influence of Lorentz force
,”
Mathematics
8
(
7
),
1094
(
2020
).
29.
N. B.
Casson
,
N.
Past
,
A. S.
Hamarsheh
,
F. A.
Alwawi
, and
H. T.
Alkasasbeh
, “
Heat transfer improvement in MHD natural convection flow of graphite oxide/carbon
,”
Processes
8
(
11
),
1444
(
2020
).
30.
K. E.
Hoque
,
S.
Sawall
,
M. A.
Hoque
, and
M. S.
Hossain
, “
Hemodynamic simulations to identify irregularities in coronary artery models
,”
J. Adv. Math. Comput. Sci.
28
(
5
),
1
19
(
2018
).
31.
I. E.
Vignon-Clementel
,
C.
Alberto Figueroa
,
K. E.
Jansen
, and
C. A.
Taylor
, “
Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries
,”
Comput. Methods Appl. Mech. Eng.
195
(
29–32
),
3776
3796
(
2006
).
32.
P.
Eslami
 et al, “
Effect of wall elasticity on hemodynamics and wall shear stress in patient-specific simulations in the coronary arteries
,”
J. Biomech. Eng.
142
(
2
),
0245031
(
2020
).
33.
F.
Gijsen
 et al, “
Expert recommendations on the assessment of wall shear stress in human coronary arteries: Existing methodologies, technical considerations, and clinical applications
,”
Eur. Heart J.
40
(
41
),
3421
3433
(
2019
).
34.
J. B.
Park
 et al, “
Computational fluid dynamic measures of wall shear stress are related to coronary lesion characteristics
,”
Heart
102
(
20
),
1655
1661
(
2016
).
35.
M.
Zuin
,
G.
Rigatelli
,
D.
Vassilev
,
F.
Ronco
,
A.
Rigatelli
, and
L.
Roncon
, “
Computational fluid dynamic-derived wall shear stress of non-significant left main bifurcation disease may predict acute vessel thrombosis at 3-year follow-up
,”
Heart Vessels
35
,
297
(
2020
).
36.
A. M.
Islam
,
A.
Mohibullah
, and
T.
Paul
, “
Cardiovascular disease in Bangladesh: A review
,”
Bangladesh Hear. J.
31
(
2
),
80
99
(
2017
).
37.
A.
Updegrove
,
N. M.
Wilson
,
J.
Merkow
,
H.
Lan
,
A. L.
Marsden
, and
S. C.
Shadden
, “
SimVascular: An open source pipeline for cardiovascular simulation
,”
Ann. Biomed. Eng.
45
(
3
),
525
541
(
2017
).
38.
J.
Ahrens
,
B.
Geveci
, and
C.
Law
, “
ParaView: An end-user tool for large-data visualization
,” in
Visualization Handbook
(
Elsevier
,
2005
), Vol.
836
, pp.
717
731
.
39.
T.
Lundh
,
G. Y.
Suh
,
P.
DiGiacomo
, and
C.
Cheng
, “
A Lagrangian cylindrical coordinate system for characterizing dynamic surface geometry of tubular anatomic structures
,”
Med. Biol. Eng. Comput.
56
(
9
),
1659
1668
(
2018
).
40.
M.
Gottsauner-Wolf
,
H.
Sochor
,
D.
Moertl
,
M.
Gwechenberger
,
F.
Stockenhuber
, and
P.
Probst
, “
Assessing coronary stenosis. Quantitative coronary angiography versus visual estimation from cine-film or pharmacological stress perfusion images
,”
Eur. Heart J.
17
(
8
),
1167
1174
(
1996
).
41.
B. F.
Waller
, “
The eccentric coronary atherosclerotic plaque: Morphologic observations and clinical relevance
,”
Clin. Cardiol.
12
(
1
),
14
20
(
1989
).
42.
T.
Saeed
,
I.
Abbas
, and
M.
Marin
, “
A GL model on thermo-elastic interaction in a poroelastic material using finite element method
,”
Symmetry (Basel)
12
(
3
),
488
(
2020
).
43.
R.
Kumar
and
I. A.
Abbas
, “
Deformation due to thermal source in micropolar thermoelastic media with thermal and conductive temperatures
,”
J. Comput. Theor. Nanosci.
10
(
9
),
2241
2247
(
2013
).
44.
R.
A
and
M. X. S.
Malatos
, “
Advances in low-dimensional mathematical modeling of the human cardiovascular system
,”
J. Hypertens. Manage.
2
(
2
),
17
(
2016
).
45.
M. M. S.
Malatos
,
A.
Raptis
,
M. A.
Xenos
,
G.
Kouvelos
,
A.
Giannoukas
, and
E. L.
Verhoeven
, “
A multiscale model for hemodynamic properties' prediction after fenestrated endovascular aneurysm repair. A pilot study
,”
Hell. Vasc. J.
1
(
2
),
73
79
(
2019
).
46.
I. A.
Abbas
and
M.
Marin
, “
Analytical solution of thermoelastic interaction in a half-space by pulsed laser heating
,”
Phys. E
87
,
254
260
(
2017
).
47.
T.
Du
,
D.
Hu
, and
D.
Cai
, “
Outflow boundary conditions for blood flow in arterial trees
,”
PLoS One
10
(
5
),
e0128597
(
2015
).
48.
B. M.
Johnston
,
P. R.
Johnston
,
S.
Corney
, and
D.
Kilpatrick
, “
Non-Newtonian blood flow in human right coronary arteries: Steady state simulations
,”
J. Biomech.
37
(
5
),
709
720
(
2004
).
49.
H. J.
Kim
,
I. E.
Vignon-Clementel
,
J. S.
Coogan
,
C. A.
Figueroa
,
K. E.
Jansen
, and
C. A.
Taylor
, “
Patient-specific modeling of blood flow and pressure in human coronary arteries
,”
Ann. Biomed. Eng.
38
(
10
),
3195
3209
(
2010
).
50.
Y.
Yoshikawa
,
M.
Nakamoto
,
M.
Nakamura
,
T.
Hoshi
, and
E.
Yamamoto
, “
On–site evaluation of CT–based fractional flow reserve using simple boundary conditions for computational fluid dynamics
,”
Int. J. Cardiovasc. Imaging
36
,
337
(
2019
).
51.
D. N.
Ku
, “
Blood flow in arteries
,”
Annu. Rev. Fluid Mech.
29
(
1
),
399
434
(
1997
).
52.
P. D.
Morris
,
J.
Iqbal
,
C.
Chiastra
,
W.
Wu
,
F.
Migliavacca
, and
J. P.
Gunn
, “
Simultaneous kissing stents to treat unprotected left main stem coronary artery bifurcation disease; stent expansion, vessel injury, hemodynamics, tissue healing, restenosis, and repeat revascularization
,”
Catheter. Cardiovasc. Interventions
92
,
1
12
(
2018
).
53.
H.
Wang
,
T.
Krüger
, and
F.
Varnik
, “
Effects of size and elasticity on the relation between flow velocity and wall shear stress in side-wall aneurysms: A lattice Boltzmann-based computer simulation study
,”
PLoS One
15
(
1
),
e0227770
(
2020
).
54.
M.
Ferrari
,
G. S.
Werner
,
P.
Bahrmann
,
B. M.
Richartz
, and
H. R.
Figulla
, “
Turbulent flow as a cause for underestimating coronary flow reserve measured by Doppler guide wire
,”
Cardiovasc. Ultrasound
4
,
1
9
(
2006
).
55.
J.
Liu
,
Y.
Xiao
,
L.
Zhang
,
M.
Li
,
J.
Tao
, and
S.
Xu
, “
Extension at the downstream end of turbulent band in channel flow
,”
Phys. Fluids
32
(
12
),
121703
(
2020
).
56.
B. C.
Konala
,
A.
Das
, and
R. K.
Banerjee
, “
Influence of arterial wall-stenosis compliance on the coronary diagnostic parameters
,”
J. Biomech.
44
(
5
),
842
847
(
2011
).
57.
S.
Kamangar
 et al, “
Effect of stenosis on hemodynamics in left coronary artery based on patient-specific CT scan
,”
Biomed. Mater. Eng.
30
(
4
),
463
473
(
2019
).
You do not currently have access to this content.