In the present work, a three-dimensional turbulent wall jet is simulated using large-eddy simulation to characterize its flow and thermal characteristics. The solver is first validated for streamwise velocity decay, wall-normal and spanwise spread rates, and mean and second-order flow statistics using reference experimental data from the literature. The mean vorticity transport equation for the streamwise component is analyzed to identify the dominant terms that contribute to the large spanwise spread of the jet. The terms that contain Reynolds normal stresses are identified as major contributors to a large mean streamwise component of vorticity. The mean streamwise and wall-normal components of vorticity are studied for their evolution and contribution to the spanwise spread. It was found that both these components together aid in the large spanwise spread of the jet. The heat transfer characteristics are studied for the jet flow on a heated isothermal wall. The profiles of mean and fluctuating temperatures, the evolution of the Nusselt number, and turbulent heat flux characteristics are studied. The streamwise evolution of Nusselt number behavior is explained using instantaneous vortical structures. A significant drop in heat transfer is observed in the potential core region. Further, the turbulent heat flux contours show that the transport of heat in the streamwise direction is different from that of the plane wall jet. A peculiar turbulent heat transport was found in the analysis of the spanwise heat flux. The heat transfer characteristics noted for the three-dimensional wall jet may help in the design and analysis of film-cooling applications.

1.
C.
Fu
,
M.
Uddin
, and
A.
Curley
, “
Insights derived from CFD studies on the evolution of planar wall jets
,”
Eng. Appl. Comput. Fluid Mech.
10
,
44
56
(
2016
).
2.
R.
AbdulNour
,
K.
Willenborg
,
J.
McGrath
,
J.
Foss
, and
B.
AbdulNour
, “
Measurements of the convection heat transfer coefficient for a planar wall jet: Uniform temperature and uniform heat flux boundary conditions
,”
Exp. Therm. Fluid Sci.
22
,
123
131
(
2000
).
3.
I. Z.
Naqavi
,
P. G.
Tucker
, and
Y.
Liu
, “
Large-eddy simulation of the interaction of wall jets with external stream
,”
Int. J. Heat Fluid Flow
50
,
431
444
(
2014
).
4.
E.
Curd
, “
Possible applications of wall jets in controlling air contaminants
,”
Ann. Occup. Hyg.
24
,
133
146
(
1981
).
5.
T.
Guo
,
M. J.
Rau
,
P. P.
Vlachos
, and
S. V.
Garimella
, “
Axisymmetric wall jet development in confined jet impingement
,”
Phys. Fluids
29
,
025102
(
2017
).
6.
S.
Sharma
,
V.
Jesudhas
,
R.
Balachandar
, and
R.
Barron
, “
Turbulence structure of a counter-flowing wall jet
,”
Phys. Fluids
31
,
025110
(
2019
).
7.
S.
Dey
,
G.
Ravi Kishore
,
O.
Castro-Orgaz
, and
S. Z.
Ali
, “
Hydrodynamics of submerged turbulent plane offset jets
,”
Phys. Fluids
29
,
065112
(
2017
).
8.
P. M.
Sforza
and
G.
Herbst
, “
A study of three-dimensional, incompressible, turbulent wall jets
,”
AIAA J.
8
,
276
283
(
1970
).
9.
B.
Newman
,
R.
Patel
,
S.
Savage
, and
H.
Tjio
, “
Three-dimensional wall jet originating from a circular orifice
,”
Aeronaut. Q.
23
,
188
200
(
1972
).
10.
N.
Rajaratnam
and
B. S.
Pani
, “
Three-dimensional turbulent wall jets
,”
J. Hydraul. Div.
100
,
69
83
(
1974
).
11.
H.
Sun
and
D.
Ewing
, “
Effect of initial and boundary conditions on development of three-dimensional wall jets
,” in
40th AIAA Aerospace Sciences Meeting and Exhibit
(
2002
), p.
733
.
12.
J. W.
Hall
and
D.
Ewing
, “
Three-dimensional turbulent wall jets issuing from moderate-aspect-ratio rectangular channels
,”
AIAA J.
45
,
1177
1186
(
2007
).
13.
M.
Agelin-Chaab
and
M.
Tachie
, “
Characteristics of turbulent three-dimensional wall jets
,”
J. Fluids Eng.
133
,
021201
(
2011
).
14.
G.
Padmanabham
and
B. H.
Lakshmana Gowda
, “
Mean and turbulence characteristics of a class of three-dimensional wall jets—Part 2: Turbulence characteristics
,”
J. Fluids Eng.
113
,
629
634
(
1991
).
15.
H.
Abrahamsson
,
B.
Johansson
, and
L.
Löfdahl
, “
An investigation of the turbulence field in a three-dimensional wall jet
,”
Advances in Turbulence VI
(
Springer
,
1996
), pp.
417
420
.
16.
A. W.-K.
Law
and
Herlina
, “
An experimental study on turbulent circular wall jets
,”
J. Hydraul. Eng.
128
,
161
174
(
2002
).
17.
A. W.-K.
Law
 et al., “
Measurements of turbulent mass transport of a circular wall jet
,”
Int. J. Heat Mass Transfer
45
,
4899
4905
(
2002
).
18.
J. J.
Ai
,
S.
Yu
,
A. W.-K.
Law
, and
L.
Chua
, “
Vortex dynamics in starting square water jets
,”
Phys. Fluids
17
,
014106
(
2005
).
19.
S. C.
Godi
,
A.
Pattamatta
, and
C.
Balaji
, “
Effect of the inlet geometry on the flow and heat transfer characteristics of three-dimensional wall jets
,”
J. Heat Transfer
141
,
112201
(
2019
).
20.
S. C.
Godi
,
A.
Pattamatta
, and
C.
Balaji
, “
Heat transfer from a single and row of three dimensional wall jets-a combined experimental and numerical study
,”
Int. J. Heat Mass Transfer
159
,
119801
(
2020
).
21.
B.
Launder
and
W.
Rodi
, “
The turbulent wall jet
,”
Prog. Aerosp. Sci.
19
,
81
128
(
1979
).
22.
B.
Launder
and
W.
Rodi
, “
The turbulent wall jet measurements and modeling
,”
Annu. Rev. Fluid Mech.
15
,
429
459
(
1983
).
23.
T.
Craft
and
B.
Launder
, “
On the spreading mechanism of the three-dimensional turbulent wall jet
,”
J. Fluid Mech.
435
,
305
326
(
2001
).
24.
L.
Namgyal
and
J. W.
Hall
, “
Coherent streamwise vortex structures in the near-field of the three-dimensional wall jet
,”
J. Fluids Eng.
135
,
061204
(
2013
).
25.
L.
Namgyal
and
J.
Hall
, “
Reynolds stress distribution and turbulence generated secondary flow in the turbulent three-dimensional wall jet
,”
J. Fluid Mech.
800
,
613
644
(
2016
).
26.
T.
Panidis
,
R.
Schwab
, and
A.
Pollard
, “
The role of vorticity in the near field development of sharp-edged, rectangular, wall jets
,”
Int. J. Heat Fluid Flow
67
,
3
22
(
2017
).
27.
A. P.
Vouros
,
T.
Panidis
,
A.
Pollard
, and
R. R.
Schwab
, “
Near field vorticity distributions from a sharp-edged rectangular jet
,”
Int. J. Heat Fluid Flow
51
,
383
394
(
2015
).
28.
I. Z.
Naqavi
,
J. C.
Tyacke
, and
P. G.
Tucker
, “
Direct numerical simulation of a wall jet: Flow physics
,”
J. Fluid Mech.
852
,
507
542
(
2018
).
29.
I. Z.
Naqavi
,
J. C.
Tyacke
, and
P. G.
Tucker
, “
A numerical study of a plane wall jet with heat transfer
,”
Int. J. Heat Fluid Flow
63
,
99
107
(
2017
).
30.
N.
Rostamy
,
D.
Bergstrom
,
D.
Sumner
, and
J.
Bugg
, “
The effect of surface roughness on the turbulence structure of a plane wall jet
,”
Phys. Fluids
23
,
085103
(
2011
).
31.
D.
Ahlman
,
G.
Brethouwer
, and
A. V.
Johansson
, “
Direct numerical simulation of a plane turbulent wall-jet including scalar mixing
,”
Phys. Fluids
19
,
065102
(
2007
).
32.
D.
Ahlman
,
G.
Velter
,
G.
Brethouwer
, and
A. V.
Johansson
, “
Direct numerical simulation of nonisothermal turbulent wall jets
,”
Phys. Fluids
21
,
035101
(
2009
).
33.
Z.
Pouransari
,
G.
Brethouwer
, and
A. V.
Johansson
, “
Direct numerical simulation of an isothermal reacting turbulent wall-jet
,”
Phys. Fuids
23
,
085104
(
2011
).
34.
A.
Dejoan
and
M. A.
Leschziner
, “
Large eddy simulation of a plane turbulent wall jet
,”
Phys. Fluids
17
,
025102
(
2005
).
35.
P.
Kakka
and
K.
Anupindi
, “
Assessment of subgrid-scale models for large-eddy simulation of a planar turbulent wall-jet with heat transfer
,”
Int. J. Heat Mass Transfer
153
,
119593
(
2020
).
36.
S.
Zhang
,
A. W.-K.
Law
, and
B.
Zhao
, “
Large eddy simulations of turbulent circular wall jets
,”
Int. J. Heat Mass Transfer
80
,
72
84
(
2015
).
37.
S. B.
Pope
,
Turbulent Flows
(
IOP Publishing
,
2001
).
38.
H. G.
Weller
,
G.
Tabor
,
H.
Jasak
, and
C.
Fureby
, “
A tensorial approach to computational continuum mechanics using object-oriented techniques
,”
Comput. Phys.
12
,
620
631
(
1998
).
39.
See http://www.openfoam.org/ for “
OpenFOAM Documentation, Version 5.0
.”
40.
U.
Ayachit
,
The Paraview Guide: A Parallel Visualization Application
(
Kitware, Inc.
,
2015
).
41.
T.
Williams
,
C.
Kelley
 et al., see http://gnuplot.sourceforge.net/ for “
Gnuplot 4.4: An Interactive Plotting Program
,
2010
.”
42.
I.
Celik
,
M.
Klein
, and
J.
Janicka
, “
Assessment measures for engineering les applications
,”
J. Fluids Eng.
131
,
031102
(
2009
).
You do not currently have access to this content.