The Kolmogorov flow is a paradigmatic model flow used to investigate the transition from laminar to turbulent regimes in confined and, especially, in unbounded domains. It represents a solution of the forced Navier–Stokes equation, where the forcing term is sinusoidal. The resulting velocity profile is also sinusoidal with the same wavenumber of the forcing term. In this study, we generalize the Kolmogorov flow making use of a generic forcing term defined by a Fourier series that bridges the classical Kolmogorov flow to an arbitrary even-degree power-law profile. Thereafter, we perform a linear stability analysis on the power-law profiles for exponents, α=2,4,6,8, and 10, and the corresponding generalized Kolmogorov flows, varying the truncation index K of the Fourier series. Several neutral stability curves are computed numerically for wall-bounded flows and the relevant critical conditions are compared in terms of critical Reynolds number, critical wavelength, and eigenspectrum at criticality. The most dangerous perturbations are thoroughly characterized, and we identify three qualitatively different most dangerous modes, depending on α, K, the Reynolds number, and the perturbation wavelength.

1.
P. G.
Drazin
and
W. H.
Reid
,
Hydrodynamic Stability
(
Cambridge university Press
,
2004
).
2.
D.
Barkley
, “
Simplifying the complexity of pipe flow
,”
Phys. Rev. E
84
,
016309
(
2011
).
3.
Z. S.
She
, “
Large-scale dynamics and transition to turbulence in the two-dimensional Kolmogorov flow
,”in
CTTR
(
1988
), pp.
374
396
.
4.
V. I.
Arnol'd
and
L. D.
Meshalkin
, “
An kolmogorov's seminar on selected problems of analysis (1958/1959)
,”
Usp. Mat. Nauk
15
,
247
250
(
1960
).
5.
N. F.
Bondarenko
,
M. Z.
Gak
, and
F. V.
Dolzhanskii
, “
Laboratory and theoretical models of plane periodic flow
,”
Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana
15
,
1017
1026
(
1979
).
6.
A. M.
Obukhov
, “
Kolmogorov flow and laboratory simulation of it
,”
Russ. Math. Surv.
38
,
113
126
(
1983
).
7.
J.
Sommeria
, “
Experimental study of the two-dimensional inverse energy cascade in a square box
,”
J. Fluid Mech.
170
,
139
168
(
1986
).
8.
E.
Kazantsev
, “
Unstable periodic orbits and attractor of the barotropic ocean model
,”
Nonlinear Processes Geophys.
5
,
193
208
(
1998
).
9.
E.
Kazantsev
, “
Sensitivity of the attractor of the barotropic ocean model to external influences: Approach by unstable periodic orbits
,”
Nonlinear Processes Geophys.
8
,
281
300
(
2001
).
10.
Y.-K.
Tsang
and
W. R.
Young
, “
Energy-enstrophy stability of β-plane Kolmogorov flow with drag
,”
Phys. Fluids
20
,
084102
(
2008
).
11.
J. M.
Burgess
,
C.
Bizon
,
W. D.
McCormick
,
J. B.
Swift
, and
H. L.
Swinney
, “
Instability of the Kolmogorov flow in a soap film
,”
Phys. Rev. E
60
,
715
(
1999
).
12.
L. D.
Meshalkin
and
I. G.
Sinai
, “
Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous liquid
,”
J. Appl. Math. Mech.
25
,
1700
1705
(
1961
).
13.
V. I.
Iudovich
, “
Example of the generation of a secondary stationary or periodic flow when there is loss of stability of the laminar flow of a viscous incompressible fluid
,”
J. Appl. Math. Mech.
29
,
527
544
(
1965
).
14.
C.
Marchioro
, “
An example of absence of turbulence for any Reynolds number
,”
Commun. Math. Phys.
105
,
99
106
(
1986
).
15.
H.
Okamoto
and
M.
Shōji
, “
Bifurcation diagrams in Kolmogorov's problem of viscous incompressible fluid on 2D flat tori
,”
Jpn. J. Ind. Appl. Math.
10
,
191
(
1993
).
16.
H.
Okamoto
, “
A study of bifurcation of Kolmogorov flows with an emphasis on the singular limit
,” in
Proceedings of the International Congress of Mathematicians
(
1998
), Vol.
3
, pp.
523
532
.
17.
M.
Matsuda
and
S.
Miyatake
, “
Bifurcation analysis of Kolmogorov flows
,”
Tohoku Math. J., Second Ser.
54
,
329
365
(
2002
).
18.
K.
Nagatou
, “
A computer-assisted proof on the stability of the kolmogorov flows of incompressible viscous fluid
,”
J. Comput. Appl. Math.
169
,
33
44
(
2004
).
19.
K.
Gotoh
and
M.
Yamada
, “
The instability of rhombic cell flows
,”
Fluid Dyn. Res.
1
,
165
(
1987
).
20.
S.-C.
Kim
and
H.
Okamoto
, “
Bifurcations and inviscid limit of rhombic Navier–Stokes flows in tori
,”
IMA J. Appl. Math.
68
,
119
134
(
2003
).
21.
A.
Thess
, “
Instabilities in two-dimensional spatially periodic flows. Part I: Kolmogorov flow
,”
Phys. Fluids A
4
,
1385
1395
(
1992
).
22.
Z.-M.
Chen
, “
Instability of the Kolmogorov flow in a wall-bounded domain
,”
J. Phys. Commun.
4
,
015001
(
2019
).
23.
A. L.
Frenkel
, “
Stability of an oscillating Kolmogorov flow
,”
Phys. Fluids A
3
,
1718
1729
(
1991
).
24.
G.
Boffetta
,
A.
Celani
,
A.
Mazzino
,
A.
Puliafito
, and
M.
Vergassola
, “
The viscoelastic kolmogorov flow: Eddy viscosity and linear stability
,”
J. Fluid Mech.
523
,
161
(
2005
).
25.
V.
Borue
and
S. A.
Orszag
, “
Numerical study of three-dimensional Kolmogorov flow at high Reynolds numbers
,”
J. Fluid Mech.
306
,
293
323
(
1996
).
26.
J. V.
Shebalin
and
S. L.
Woodruff
, “
Kolmogorov flow in three dimensions
,”
Phys. Fluids
9
,
164
170
(
1997
).
27.
I. E.
Sarris
,
H.
Jeanmart
,
D.
Carati
, and
G.
Winckelmans
, “
Box-size dependence and breaking of translational invariance in the velocity statistics computed from three-dimensional turbulent kolmogorov flows
,”
Phys. Fluids
19
,
095101
(
2007
).
28.
J. S. A.
Green
, “
Two-dimensional turbulence near the viscous limit
,”
J. Fluid Mech.
62
,
273
287
(
1974
).
29.
N.
Platt
,
L.
Sirovich
, and
N.
Fitzmaurice
, “
An investigation of chaotic Kolmogorov flows
,”
Phys. Fluids A
3
,
681
696
(
1991
).
30.
G. J.
Chandler
and
R. R.
Kerswell
, “
Invariant recurrent solutions embedded in a turbulent two-dimensional kolmogorov flow
,”
J. Fluid Mech.
722
,
554
595
(
2013
).
31.
A.
Manela
and
J.
Zhang
, “
The effect of compressibility on the stability of wall-bounded Kolmogorov flow
,”
J. Fluid Mech.
694
,
29
49
(
2012
).
32.
F.
Gargano
,
G.
Ponetti
,
M.
Sammartino
, and
V.
Sciacca
, “
Route to chaos in the weakly stratified Kolmogorov flow
,”
Phys. Fluids
31
,
024106
(
2019
).
33.
S. V.
Fortova
, “
Numerical simulation of the three-dimensional Kolmogorov flow in a shear layer
,”
Comput. Math. Math. Phys.
53
,
311
319
(
2013
).
34.
S.
Berti
and
G.
Boffetta
, “
Elastic waves and transition to elastic turbulence in a two-dimensional viscoelastic Kolmogorov flow
,”
Phys. Rev. E
82
,
036314
(
2010
).
35.
K.
Roeller
,
J.
Vollmer
, and
S.
Herminghaus
, “
Unstable Kolmogorov flow in granular matter
,”
Chaos
19
,
041106
(
2009
).
36.
J.
Kühnen
,
B.
Song
,
D.
Scarselli
,
N. B.
Budanur
,
M.
Riedl
,
A. P.
Willis
,
M.
Avila
, and
B.
Hof
, “
Destabilizing turbulence in pipe flow
,”
Nat. Phys.
14
,
386
390
(
2018
).
37.
B. J.
Bayly
,
S. A.
Orszag
, and
T.
Herbert
, “
Instability mechanisms in shear-flow transition
,”
Annu. Rev. Fluid Mech.
20
,
359
391
(
1988
).
38.
T. A.
Driscoll
,
N.
Hale
, and
L. N.
Trefethen
, “
Chebfun guide
,” (Pafnuty Publications, Oxford,
2014
).
39.
S.
Gomé
,
L. S.
Tuckerman
, and
D.
Barkley
, “
Statistical transition to turbulence in plane channel flow
,”
Phys. Rev. Fluids
5
,
083905
(
2020
).
40.
B.
Güzel
,
I.
Frigaard
, and
D.
Martinez
, “
Predicting laminar–turbulent transition in poiseuille pipe flow for non-newtonian fluids
,”
Chem. Eng. Sci.
64
,
254
264
(
2009
).
41.
M.
Rudman
,
L. J.
Graham
,
H. M.
Blackburn
, and
L.
Pullum
, “
Non-Newtonian turbulent and transitional pipe flow
,” in
15th International Conference Hydrotransport
(
Citeseer
,
2002
), pp.
271
286
.
42.
S. A.
Bahrani
and
C.
Nouar
, “
Intermittency in the transition to turbulence for a shear-thinning fluid in Hagen-Poiseuille flow
,”
J. Appl. Fluid Mech.
7
,
1
6
(
2014
).
43.
A.
Krishnan Thota Radhakrishnan
,
C.
Poelma
,
J.
Van Lier
, and
F.
Clemens
, “
Laminar-turbulent transition of a non-Newtonian fluid flow
,”
J. Hydraul. Res.
2020
,
1
15
.
You do not currently have access to this content.