Three-dimensional numerical computations have been carried out in flow past two inline finite-height circular cylinders using Open Source Field Operation and Manipulation. Investigations have been carried out for the varying Reynolds number (Re) ranging from 150 to 300. The diameter of the upstream cylinder is varied in such a way that the size ratio (SR, ratio of the diameter of the upstream cylinder to that of the downstream cylinder) takes values of 0.25, 0.5, and 1.0. For each size of the upstream cylinder, the downstream cylinder is placed at different locations in the streamwise direction. Effects of Re, SR, and inter-cylinder spacing (S) on three-dimensional unsteady wake characteristics behind upstream and downstream cylinders have been examined using iso-Q surfaces. Unsteady wake oscillations in both the wakes are analyzed qualitatively and quantitatively in terms of Hilbert spectra and the degree of stationarity using the transverse velocity component in the wake. Different flow regimes for upstream and downstream wakes have been identified and discussed with the change in Re, SR, and S. Transitions in the wake flow are illustrated using vorticity contours, frequency spectra, and bifurcation diagram. The level of wake synchronization in the upstream wake, downstream wake, and between both the wakes has been identified with the help of the cross correlation function.

1.
H.
Nakamura
and
T.
Igarashi
, “
Forced convection heat transfer from a low-profile block simulating a package of electronic equipment
,”
J. Heat Transfer
126
,
463
470
(
2004
).
2.
T.
Igarashi
, “
Characteristics of the flow around two circular cylinders arranged in tandem: 1st report
,”
Bull. JSME
24
,
323
331
(
1981
).
3.
T.
Igarashi
, “
Characteristics of the flow around two circular cylinders arranged in tandem: 2nd report, unique phenomenon at small spacing
,”
Bull. JSME
27
,
2380
2387
(
1984
).
4.
M. M.
Zdravkovich
, “
The effects of interference between circular cylinders in cross flow
,”
J. Fluids Struct.
1
,
239
261
(
1987
).
5.
D.
Sumner
,
S. J.
Price
, and
M. P.
Païdoussis
, “
Tandem cylinders in impulsively started flow
,”
J. Fluids Struct.
13
,
955
965
(
1999
).
6.
G.
Xu
and
Y.
Zhou
, “
Strouhal numbers in the wake of two inline cylinders
,”
Exp. Fluids
37
,
248
256
(
2004
).
7.
L.
Ljungkrona
,
C.
Norberg
, and
B.
Sundén
, “
Free-stream turbulence and tube spacing effects on surface pressure fluctuations for two tubes in an in-line arrangement
,”
J. Fluids Struct.
5
,
701
727
(
1991
).
8.
L.
Ljungkrona
and
B.
Sundén
, “
Flow visualization and surface pressure measurement on two tubes in an inline arrangement
,”
Exp. Therm. Fluid Sci.
6
,
15
27
(
1993
).
9.
M. M.
Alam
,
M.
Moriya
,
K.
Takai
, and
H.
Sakamoto
, “
Fluctuating fluid forces acting on two circular cylinders in a tandem arrangement at a subcritical Reynolds number
,”
J. Wind Eng. Ind. Aerodyn.
91
,
139
154
(
2003
).
10.
M.
Arie
,
M.
Kiya
,
M.
Moriya
, and
H.
Mori
, “
Pressure fluctuations on the surface of two circular cylinders in tandem arrangement
,”
Trans. ASME J. Fluids Eng.
105
,
161
166
(
1983
).
11.
B.
Sharman
,
F. S.
Lien
,
L.
Davidson
, and
C.
Norberg
, “
Numerical predictions of low Reynolds number flows over two tandem circular cylinders
,”
Int. J. Numer. Methods Fluids
47
,
423
447
(
2005
).
12.
A.
Mussa
,
P.
Asinari
, and
L.-S.
Luo
, “
Lattice Boltzmann simulations of 2D laminar flows past two tandem cylinders
,”
J. Comput. Phys.
228
,
983
999
(
2009
).
13.
Y.
Koda
and
F.-S.
Lien
, “
Aerodynamic effects of the early three-dimensional instabilities in the flow over one and two circular cylinders in tandem predicted by the lattice Boltzmann method
,”
Comput. Fluids
74
,
32
43
(
2013
).
14.
L.
Wang
,
M. M.
Alam
, and
Y.
Zhou
, “
Two tandem cylinders of different diameters in cross-flow: Effect of an upstream cylinder on wake dynamics
,”
J. Fluid Mech.
836
,
5
42
(
2018
).
15.
S.-J.
Lee
,
S.-I.
Lee
, and
C.-W.
Park
, “
Reducing the drag on a circular cylinder by upstream installation of a small control rod
,”
Fluid Dyn. Res.
34
,
233
250
(
2004
).
16.
M.
Zhao
,
L.
Cheng
,
B.
Teng
, and
D.
Liang
, “
Numerical simulation of viscous flow past two circular cylinders of different diameters
,”
Appl. Ocean Res.
27
,
39
55
(
2005
).
17.
T.
Kawamura
,
M.
Hiwada
,
T.
Hibino
,
I.
Mabuchi
, and
M.
Kumada
, “
Flow around a finite circular cylinder on a flat plate: Cylinder height greater than turbulent boundary layer thickness
,”
Bull. JSME
27
,
2142
2151
(
1984
).
18.
C.
Lin
,
T. C.
Ho
, and
S.
Dey
, “
Characteristics of steady horseshoe vortex system near junction of square cylinder and base plate
,”
J. Eng. Mech.
134
,
184
197
(
2008
).
19.
C.-W.
Park
and
S.-J.
Lee
, “
Free end effects on the near wake flow structure behind a finite circular cylinder
,”
J. Wind Eng. Ind. Aerodyn.
88
,
231
246
(
2000
).
20.
D.
Sumner
,
J. L.
Heseltine
, and
O. J. P.
Dansereau
, “
Wake structure of a finite circular cylinder of small aspect ratio
,”
Exp. Fluids
37
,
720
730
(
2004
).
21.
S.
Tanaka
and
S.
Murata
, “
An investigation of the wake structure and aerodynamic characteristics of a finite circular cylinder. Time-averaged wake structures behind circular cylinders with various aspect ratios
,”
JSME Int. J., Ser. B
42
,
178
187
(
1999
).
22.
Y.
Liu
,
R. M. C.
So
, and
Z. X.
Cui
, “
A finite cantilevered cylinder in a cross-flow
,”
J. Fluids Struct.
20
,
589
609
(
2005
).
23.
V.
Dousset
and
A.
Pothérat
, “
Formation mechanism of hairpin vortices in the wake of a truncated square cylinder in a duct
,”
J. Fluid Mech.
653
,
519
536
(
2010
).
24.
A. K.
Saha
, “
Unsteady flow past a finite square cylinder mounted on a wall at low Reynolds number
,”
Comput. Fluids
88
,
599
615
(
2013
).
25.
D.
Zhang
,
L.
Cheng
,
H.
An
, and
M.
Zhao
, “
Direct numerical simulation of flow around a surface-mounted finite square cylinder at low Reynolds numbers
,”
Phys. Fluids
29
,
045101
(
2017
).
26.
M. R.
Rastan
,
A.
Sohankar
, and
M. M.
Alam
, “
Low-Reynolds-number flow around a wall-mounted square cylinder: Flow structures and onset of vortex shedding
,”
Phys. Fluids
29
,
103601
(
2017
).
27.
P.
Kumar
,
N. P.
Manelil
, and
S.
Tiwari
, “
Effects of shear intensity and aspect ratio on three-dimensional wake characteristics of flow past surface mounted circular cylinder
,”
Phys. Fluids
31
,
043602
(
2019
).
28.
P.
Kumar
and
S.
Tiwari
, “
Effect of incoming shear on unsteady wake in flow past surface mounted polygonal prism
,”
Phys. Fluids
31
,
113607
(
2019
).
29.
J.
Jeong
and
F.
Hussain
, “
On the identification of a vortex
,”
J. Fluid Mech.
285
,
69
94
(
1995
).
30.
R.
Haimes
and
D.
Kenwright
, “
On the velocity gradient tensor and fluid feature extraction
,” in
14th Computational Fluid Dynamics Conference
(
AIAA
,
1999
).
31.
M. M.
Zdravkovich
,
Flow Around Circular Cylinders, Vol. 2: Applications
(
Oxford University Press
,
2003
).
32.
H. F.
Wang
and
Y.
Zhou
, “
The finite-length square cylinder near wake
,”
J. Fluid Mech.
638
,
453
490
(
2009
).
33.
D.
Sumner
and
J. L.
Heseltine
, “
Tip vortex structure for a circular cylinder with a free end
,”
J. Wind Eng. Ind. Aerodyn.
96
,
1185
1196
(
2008
).
34.
Z.
Hosseini
,
J. A.
Bourgeois
, and
R. J.
Martinuzzi
, “
Large-scale structures in dipole and quadrupole wakes of a wall-mounted finite rectangular cylinder
,”
Exp. Fluids
54
,
1595
(
2013
).
35.
N. E.
Huang
,
Z.
Shen
,
S. R.
Long
,
M. C.
Wu
,
H. H.
Shih
,
Q.
Zheng
,
N.-C.
Yen
,
C. C.
Tung
, and
H. H.
Liu
, “
The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
,”
Proc. R. Soc. London, Ser. A
454
,
903
995
(
1998
).
36.
C.
Liang
,
G.
Papadakis
, and
X.
Luo
, “
Effect of tube spacing on the vortex shedding characteristics of laminar flow past an inline tube array: A numerical study
,”
Comput. Fluids
38
,
950
964
(
2009
).
37.
Y.
Uematsu
,
M.
Yamada
, and
K.
Ishii
, “
Some effects of free-stream turbulence on the flow past a cantilevered circular cylinder
,”
J. Wind Eng. Ind. Aerodyn.
33
,
43
52
(
1990
).
38.
S.
Okamoto
and
Y.
Sunabashiri
, “
Vortex shedding from a circular cylinder of finite length placed on a ground plane
,”
ASME J. Fluids Eng.
114
,
512
521
(
1992
).
39.
C. H. K.
Williamson
, “
Vortex dynamics in the cylinder wake
,”
Annu. Rev. Fluid Mech.
28
,
477
539
(
1996
).
40.
Y.
Zhou
,
H. J.
Zhang
, and
M. W.
Yiu
, “
The turbulent wake of two side-by-side circular cylinders
,”
J. Fluid Mech.
458
,
303
332
(
2002
).
You do not currently have access to this content.