Here, the phenomenon of food sticking when frying in a frying pan is experimentally explained. Thermocapillary convection causes a dry spot formation in the center of the frying pan upon heating of the sunflower oil film. It is shown that the speed of formation of a dry spot is similar to the speed of receding motion of the edge of a droplet upon impact and spreading on a solid surface. This allows theoretical determination of the speed of dewetting. For the thin liquid film flowing vertically over a solid surface, the critical volumetric flow rate qcr partitions two regimes: metastable or subcritical, when small perturbation of the film free surface results in the film rupture (q < qcr) and stable or supercritical at q > qcr. For the falling thin liquid film, the critical volumetric flow rate qcr partitions two regimes: metastable or subcritical (q < qcr) and stable or supercritical at q > qcr. At q < qcr, small deformations of the film free surface result in the film rupture. For the case of the temperature distribution in the form of a unit step function, the fundamental solution G1(x) describing the deformation of the film free surface has been derived by the perturbation technique. This solution is important by itself since it describes the most “dangerous” film surface profile at a prescribed value of the temperature drop. For an arbitrary surface temperature distribution θ (ξ), the convolution of G1(ξ) and θ ′(ξ) yields the film thickness profile.

1.
Yu. P.
Karetnikov
, “
The study of heat transfer towards a film of boiling liquid, Soviet Physics
,”
J. Tech Phys.
24
,
193
(
1954
).
2.
W.
Leidenfrost
, “
Strömungs- und Wärmeübergangsverhältnisse bei frei fallenden Rieselfilmen im Zustand der Verdampfung
,”
Naturwissenschaften
4
3
,
465
(
1956
).
3.
S. S.
Kutateladze
and
M. A.
Styrikovich
,
Hydrodynamics of Gas-Liquid Systems
(
Energia
,
Moscow
,
1976
).
4.
I. V.
Domansky
and
V. N.
Sokolov
, “
Determination of stability regimes for operation of evaporators with falling liquid film
,”
Zh. Pr. Khim.
40
,
365
(
1967
).
5.
J.
Mikielewicz
and
J. R.
Moszynskl
, “
Minimum thickness of a liquid film flowing vertically down a solid surface
,”
Int. J. Heat Mass Transfer
19
,
771
(
1976
).
6.
D. T.
Hughes
and
T. R.
Bott
, “
Minimum thickness of a liquid film flowing down a vertical tube
,”
Int. J. Heat Mass Transfer
41
,
253
260
(
1998
).
7.
L. D.
Landau
and
E. M.
Lifshits
,
Statistical Physics
, Part 1 (Theoretical Physics Series, Vol. V) (
Nauka
,
Moscow
,
1976
).
8.
V. L.
Berdichevsky
,
Variation Principles of Continuum Mechanics
(
Nauka
,
Moscow
,
1983
).
9.
A. I.
Fedorchenko
and
R. A.
Abdulkhalikov
, “
Metastable flow regimes of a thin liquid film on a vertical surface
,”
Thermophys. Aeromech.
6
,
379
(
1999
).
10.
W. S.
Norman
and
D. T.
Binns
, “
The effects of surface tension changes on the minimum wetting rates in a wetted-rod distillation column
,”
Trans. Inst. Chem. Engrs.
38
,
294
(
1960
).
11.
G. I.
Taylor
, “
The dynamics of thin sheets of fluid. Part III. Disintegration of fluid sheets
,”
Proc. R. Soc. London, Ser. A
253
,
313
321
(
1959
).
12.
F. E. C.
Culick
, “
Comments on a ruptured soap film
,”
J. Appl. Phys.
31
,
1128
1129
(
1960
).
13.
W. E.
Ranz
, “
Some experiments on the dynamics of liquid films
,”
J. Appl. Phys.
30
,
1950
1955
(
1959
).
14.
A. I.
Fedorchenko
, “
Asymptotic theory of droplet spreading after collision with a solid surface
,” in
Drop-Surface Interactions
, CISM V. 456, edited by
M.
Rein
(
Springer-Verlag
,
Wien
,
2002
), pp.
287
290
.
15.
A. I.
Fedorchenko
and
A.-B.
Wang
, “
The formation and dynamics of a blob on free and wall sheets induced by a drop impact on surfaces
,”
Phys. Fluids
16
,
3911
(
2004
).
16.
A. S.
Ginzburg
,
M. A.
Gromov
, and
G. I.
Krasovskaya
,
Thermophysical Properties of Food Products
(
Food Industry
,
Moscow
,
1980
).
17.
S.
Ishigai
,
S.
Nakanisi
,
T.
Koizumi
, and
Z.
Oyabu
, “
Hydrodynamics and heat transfer of vertical falling liquid films: Part 1, Classification of flow regimes
,”
Bull. JSME
15
,
594
(
1972
).
18.
G.
Gimbutis
,
Heat Transfer at Gravitation Flow of a Liquid Film
(
Mokslas
,
Vilnius
,
1988
).
19.
T.
Hobler
and
J.
Czajka
, “
Minimal wetting of a flat surface
,”
Chem. Stosow.
2B
,
169
(
1968
).
20.
A. I.
Fedorchenko
,
A. V.
Gorin
, and
V. E.
Nakoryakov
, “
Film absorption on a plane surface imbedded into a granular medium
,”
Russ. J. Eng. Thermophys.
3
(
No. 4
),
285
317
(
1993
).
21.
I. I.
Gogonin
,
A. R.
Dorokhov
, and
V. N.
Bocharov
, “
Formation of ‘dry’ spots in falling liquid films
,”
Izv. SO AN SSSR Ser. Tekh. Nauk
3
,
46
(
1977
).
22.
S. V.
Alekseenko
,
V. E.
Nakoryakov
, and
B. G.
Pokusaev
,
Wave Flow of Liquid Films
(
Begell House, Inc.
,
NY
,
1994
).
23.
L.
Courbin
and
H. A.
Stone
, “
Impact, puncturing, and the self-healing of soap films
,”
Phys. Fluids
18
,
091105
(
2006
).
24.
B.
Néel
and
E.
Villermaux
, “
The spontaneous puncture of thick liquid films
,”
J. Fluid Mech.
838
,
192
221
(
2018
).
25.
O. A.
Kabov
,
B.
Scheid
,
I. A.
Sharina
, and
J.-C.
Legros
, “
Heat transfer and rivulet structures formation in a falling thin liquid film locally heated
,”
Int. J. Therm. Sci.
41
,
664
672
(
2002
).
26.
D. V.
Zaitsev
and
O. A.
Kabov
, “
Study of the thermocapillary effect on a wavy falling film using a fiber optical thickness probe
,”
Exp. Fluids
39
,
712
721
(
2005
).
You do not currently have access to this content.