The intriguing role of the presence of solutes in the activity of a self-propelling droplet is investigated. A system of self-propelling micrometer-sized 4-Cyano-4′-pentylbiphenyl (5CB) droplets in an aqueous solution of tetradecyltrimethylammonium bromide (TTAB) as the surfactant is considered. It is shown that the addition of glycerol causes the active 5CB droplet to exhibit a transition from smooth to jittery motion. The motion is found to be independent of the droplet size and the nematic state of 5CB. Analogous experiments with Polyacrylamide (PAAm), Polyvinylpyrrolidone (PVP), and Polyvinyl Alcohol (PVA), as solutes, confirm that such a transition cannot merely be explained solely based on the viscosity or Peclet number of the system. We propose that the specific nature of physicochemical interactions between the solute and the droplet interface is at the root of this transition. The experiments show that the timescales associated with the influx and redistribution of surfactants at the interface are altered in the presence of solutes. Glycerol and PVP significantly enhance the rate of solubilization of the 5CB droplets resulting in a quicker re-distribution of the adsorbed TTAB molecules on the interface, causing the droplet to momentarily stop and then restart in an independent direction. On the other hand, low solubilization rates in the presence of PAAm and PVA lead to smooth trajectories. Our hypothesis is supported by the time evolution of droplet size and interfacial velocity measurements in the presence and absence of solute. Overall, our results provide fundamental insights into the complex interactions emerging due to the presence of solutes.

1.
E.
Lauga
and
R. E.
Goldstein
, “
Dance of the microswimmers
,”
Phys. Today
65
(
9
),
30
(
2012
).
2.
E.
Lauga
and
T. R.
Powers
, “
The hydrodynamics of swimming micro-organisms
,”
Rep. Prog. Phys.
72
,
096601
(
2009
).
3.
T.
Ishikawa
,
M. P.
Simmonds
, and
T. J.
Pedley
, “
Hydrodynamic interaction of two swimming model micro-organisms
,”
J. Fluid Mech.
568
,
119
(
2006
).
4.
Y.
Hatwalne
,
S.
Ramaswamy
,
M.
Rao
, and
R. A.
Simha
, “
Rheology of active-particle suspensions
,”
Phys. Rev. Lett.
92
,
118101
(
2004
).
5.
I. H.
Riedel
,
K.
Kruse
, and
J.
Howard
, “
A self-organized vortex array of hydrodynamically entrained sperm cells
,”
Science
309
,
300
(
2005
).
6.
T.
Ishikawa
and
T. J.
Pedley
, “
Coherent structures in monolayers of swimming particles
,”
Phys. Rev. Lett.
100
,
088103
(
2008
).
7.
F.
Ginelli
,
F.
Peruani
,
M.
Bär
, and
H.
Chaté
, “
Large-scale collective properties of self-propelled rods
,”
Phys. Rev. Lett.
104
,
184502
(
2010
).
8.
S.
Ramaswamy
, “
The mechanics and statistics of active matter
,”
Annu. Rev. Condens. Matter Phys.
1
,
323
(
2010
).
9.
T.
Vicsek
and
A.
Zafeiris
, “
Collective motion
,”
Phys. Rep.
517
,
71
(
2012
).
10.
C. C.
Maass
,
C.
Krüger
,
S.
Herminghaus
, and
C.
Bahr
, “
Swimming droplets
,”
Annu. Rev. Condens. Matter Phys.
7
,
171
(
2016
).
11.
A.
Zöttl
and
H.
Stark
, “
Emergent behavior in active colloids
,”
J. Phys. Condens. Matter
28
,
253001
(
2016
).
12.
C.
Bechinger
,
R.
Di Leonardo
,
H.
Löwen
,
C.
Reichhardt
,
G.
Volpe
, and
G.
Volpe
, “
Active particles in complex and crowded environments
,”
Rev. Mod. Phys.
88
,
045006
(
2016
).
13.
S.
Sundararajan
,
P. E.
Lammert
,
A. W.
Zudans
,
V. H.
Crespi
, and
A.
Sen
, “
Catalytic motors for transport of colloidal cargo
,”
Nano Lett.
8
,
1271
(
2008
).
14.
J.
Simmchen
,
A.
Baeza
,
D.
Ruiz
,
M. J.
Esplandiu
, and
M.
Vallet-Regí
, “
Asymmetric hybrid silica nanomotors for capture and cargo transport: Towards a novel motion-based DNA sensor
,”
Small
8
,
2053
(
2012
).
15.
M.
Li
,
M.
Brinkmann
,
I.
Pagonabarraga
,
R.
Seemann
, and
J. B.
Fleury
, “
Spatiotemporal control of cargo delivery performed by programmable self-propelled Janus droplets
,”
Commun. Phys.
1
,
23
(
2018
).
16.
J. R.
Baylis
,
J. H.
Yeon
,
M. H.
Thomson
,
A.
Kazerooni
,
X.
Wang
,
A. E. S.
John
,
E. B.
Lim
,
D.
Chien
,
A.
Lee
,
J. Q.
Zhang
,
J. M.
Piret
,
L. S.
Machan
,
T. F.
Burke
,
N. J.
White
, and
C. J.
Kastrup
, “
Self-propelled particles that transport cargo through flowing blood and halt hemorrhage
,”
Sci. Adv.
1
,
e1500379
(
2015
).
17.
Z.
Izri
,
M. N.
Van Der Linden
,
S.
Michelin
, and
O.
Dauchot
, “
Self-propulsion of pure water droplets by spontaneous Marangoni-stress-driven motion
,”
Phys. Rev. Lett.
113
,
248302
(
2014
).
18.
W.
Gao
,
R.
Dong
,
S.
Thamphiwatana
,
J.
Li
,
W.
Gao
,
L.
Zhang
, and
J.
Wang
, “
Artificial micromotors in the mouse's stomach: A step toward in vivo use of synthetic motors
,”
ACS Nano
9
,
117
(
2015
).
19.
M.
García
,
J.
Orozco
,
M.
Guix
,
W.
Gao
,
S.
Sattayasamitsathit
,
A.
Escarpa
,
A.
Merkoçi
, and
J.
Wang
, “
Micromotor-based lab-on-chip immunoassays
,”
Nanoscale
5
,
1325
(
2013
).
20.
M. E.
Szakasits
,
W.
Zhang
, and
M. J.
Solomon
, “
Dynamics of fractal cluster gels with embedded active colloids
,”
Phys. Rev. Lett.
119
,
058001
(
2017
).
21.
M. E.
Szakasits
,
K. T.
Saud
,
X.
Mao
, and
M. J.
Solomon
, “
Rheological implications of embedded active matter in colloidal gels
,”
Soft Matter
15
,
8012
(
2019
).
22.
W.
Gao
and
J.
Wang
, “
Synthetic micro/nanomotors in drug delivery
,”
Nanoscale
6
,
10486
(
2014
).
23.
W.
Gao
and
J.
Wang
, “
The environmental impact of micro/nanomachines: A review
,”
ACS Nano
8
,
3170
(
2014
).
24.
J.
Bialké
,
T.
Speck
, and
H.
Löwen
, “
Active colloidal suspensions: Clustering and phase behavior
,”
J. Non-Cryst. Solids
407
,
367
(
2015
).
25.
Z.
Lin
,
T.
Si
,
Z.
Wu
,
C.
Gao
,
X.
Lin
, and
Q.
He
, “
Light-activated active colloid ribbons
,”
Angew. Chem., Int. Ed.
56
,
13517
(
2017
).
26.
Z.
Wu
,
X.
Lin
,
X.
Zou
,
J.
Sun
, and
Q.
He
, “
Biodegradable protein-based rockets for drug transportation and light-triggered release
,”
ACS Appl. Mater. Interfaces
7
,
250
(
2015
).
27.
J. R.
Howse
,
R. A. L.
Jones
,
A. J.
Ryan
,
T.
Gough
,
R.
Vafabakhsh
, and
R.
Golestanian
, “
Self-motile colloidal particles: From directed propulsion to random walk
,”
Phys. Rev. Lett.
99
,
048102
(
2007
).
28.
J. L.
Anderson
and
D. C.
Prieve
, “
Diffusiophoresis: Migration of colloidal particles in gradients of solute concentration
,”
Sep. Purif. Rev.
13
,
67
(
1984
).
29.
S.
Herminghaus
,
C. C.
Maass
,
C.
Krüger
,
S.
Thutupalli
,
L.
Goehring
, and
C.
Bahr
, “
Interfacial mechanisms in active emulsions
,”
Soft Matter
10
,
7008
(
2014
).
30.
M.
Morozov
and
S.
Michelin
, “
Self-propulsion near the onset of Marangoni instability of deformable active droplets
,”
J. Fluid Mech.
860
,
711
(
2019
).
31.
S.
Thutupalli
,
R.
Seemann
, and
S.
Herminghaus
, “
Swarming behavior of simple model squirmers
,”
New J. Phys.
13
,
073021
(
2011
).
32.
M.
Schmitt
and
H.
Stark
, “
Marangoni flow at droplet interfaces: Three-dimensional solution and applications
,”
Phys. Fluids
28
,
012106
(
2016
).
33.
T.
Toyota
,
N.
Maru
,
M. M.
Hanczyc
,
T.
Ikegami
, and
T.
Sugawara
, “
Self-propelled oil droplets consuming ‘fuel’ surfactant
,”
J. Am. Chem. Soc.
131
,
5012
(
2009
).
34.
V.
Pratap
,
N.
Moumen
, and
R. S.
Subramanian
, “
Thermocapillary motion of a liquid drop on a horizontal solid surface
,”
Langmuir
24
,
5185
(
2008
).
35.
H. B.
Nguyen
and
J. C.
Chen
, “
A numerical study of thermocapillary migration of a small liquid droplet on a horizontal solid surface
,”
Phys. Fluids
22
,
062102
(
2010
).
36.
J. R.
Mac Intyre
,
J. M.
Gomba
,
C. A.
Perazzo
,
P. G.
Correa
, and
M.
Sellier
, “
Thermocapillary migration of droplets under molecular and gravitational forces
,”
J. Fluid Mech.
847
,
1
(
2018
).
37.
E. F.
Greco
and
R. O.
Grigoriev
, “
Thermocapillary migration of interfacial droplets
,”
Phys. Fluids
21
,
042105
(
2009
).
38.
M. L.
Ford
and
A.
Nadim
, “
Thermocapillary migration of an attached drop on a solid surface
,”
Phys. Fluids
6
,
3183
(
1994
).
39.
F.
Brochard
, “
Motions of droplets on solid surfaces induced by chemical or thermal gradients
,”
Langmuir
5
,
432
(
1989
).
40.
G.
Karapetsas
,
K. C.
Sahu
,
K.
Sefiane
, and
O. K.
Matar
, “
Thermocapillary-driven motion of a sessile drop: Effect of non-monotonic dependence of surface tension on temperature
,”
Langmuir
30
,
4310
(
2014
).
41.
I.
Lagzi
,
S.
Soh
,
P. J.
Wesson
,
K. P.
Browne
, and
B. A.
Grzybowski
, “
Maze solving by chemotactic droplets
,”
J. Am. Chem. Soc.
132
,
1198
(
2010
).
42.
T.
Banno
,
A.
Asami
,
N.
Ueno
,
H.
Kitahata
,
Y.
Koyano
,
K.
Asakura
, and
T.
Toyota
, “
Deformable self-propelled micro-object comprising underwater oil droplets
,”
Sci. Rep.
6
,
31292
(
2016
).
43.
C.
Jin
,
C.
Krüger
, and
C. C.
Maass
, “
Chemotaxis and autochemotaxis of self-propelling droplet swimmers
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
5089
(
2017
).
44.
M. M.
Hanczyc
,
T.
Toyota
,
T.
Ikegami
,
N.
Packard
, and
T.
Sugawara
, “
Fatty acid chemistry at the oil–water interface: Self-propelled oil droplets
,”
J. Am. Chem. Soc.
129
,
9386
(
2007
).
45.
T.
Ban
and
H.
Nakata
, “
Metal-ion-dependent motion of self-propelled droplets due to the Marangoni effect
,”
J. Phys. Chem. B
119
,
7100
(
2015
).
46.
M.
Morozov
, “
Adsorption inhibition by swollen micelles may cause multistability in active droplets
,”
Soft Matter
16
,
5624
(
2020
).
47.
Y.
He
,
P.
Yazhgur
,
A.
Salonen
, and
D.
Langevin
, “
Adsorption–desorption kinetics of surfactants at liquid surfaces
,”
Adv. Colloid Interface Sci.
222
,
377
(
2015
).
48.
T.
Banno
,
R.
Kuroha
, and
T.
Toyota
, “
pH-sensitive self-propelled motion of oil droplets in the presence of cationic surfactants containing hydrolyzable ester linkages
,”
Langmuir
28
,
1190
(
2012
).
49.
K.
Peddireddy
,
P.
Kumar
,
S.
Thutupalli
,
S.
Herminghaus
, and
C.
Bahr
, “
Solubilization of thermotropic liquid crystal compounds in aqueous surfactant solutions
,”
Langmuir
28
,
12426
(
2012
).
50.
A.
Izzet
,
P.
Moerman
,
J.
Groenewold
,
J.
Bibette
, and
J.
Brujić
, “
Tunable active rotational diffusion in swimming droplets
,”
Phys. Rev. X
10
,
021035
(
2019
).
51.
P. G.
Moerman
,
H. W.
Moyses
,
E. B.
Van Der Wee
,
D. G.
Grier
,
A.
Van Blaaderen
,
W. K.
Kegel
,
J.
Groenewold
, and
J.
Brujic
, “
Solute-mediated interactions between active droplets
,”
Phys. Rev. E
96
,
032607
(
2017
).
52.
P. D.
Todorov
,
P. A.
Kralchevsky
,
N. D.
Denkov
,
G.
Broze
, and
A.
Mehreteab
, “
Kinetics of solubilization of n-decane and benzene by micellar solutions of sodium dodecyl sulfate
,”
J. Colloid Interface Sci.
245
,
371
(
2002
).
53.
T.
Banno
,
S.
Miura
,
R.
Kuroha
, and
T.
Toyota
, “
Mode changes associated with oil droplet movement in solutions of gemini cationic surfactants
,”
Langmuir
29
,
7689
(
2013
).
54.
M.
Suga
,
S.
Suda
,
M.
Ichikawa
, and
Y.
Kimura
, “
Self-propelled motion switching in nematic liquid crystal droplets in aqueous surfactant solutions
,”
Phys. Rev. E
97
,
062703
(
2018
).
55.
C.
Krüger
,
G.
Klös
,
C.
Bahr
, and
C. C.
Maass
, “
Curling liquid crystal microswimmers: A cascade of spontaneous symmetry breaking
,”
Phys. Rev. Lett.
117
,
048003
(
2016
).
56.
M.
Schmitt
and
H.
Stark
, “
Active Brownian motion of emulsion droplets: Coarsening dynamics at the interface and rotational diffusion
,”
Eur. Phys. J. E
39
,
80
(
2016
).
57.
B. V.
Hokmabad
,
R.
Dey
,
M.
Jalaal
,
D.
Mohanty
,
M.
Almukambetova
,
K. A.
Baldwin
,
D.
Lohse
, and
C. C.
Maass
, “
Emergence of bimodal motility in active droplets
,” arXiv:2005.12721v2 (
2020
).
58.
M. L.
Moyá
,
A.
Rodríguez
,
M.
del Mar Graciani
, and
G.
Fernández
, “
Role of the solvophobic effect on micellization
,”
J. Colloid Interface Sci.
316
,
787
(
2007
).
59.
P. G.
de Gennes
and
J.
Prost
,
The Physics of Liquid Crystals
(
Clarendon Press
,
1993
).
60.
S.
Ebbens
,
R. A. L.
Jones
,
A. J.
Ryan
,
R.
Golestanian
, and
J. R.
Howse
, “
Self-assembled autonomous runners and tumblers
,”
Phys. Rev. E
82
,
015304
(
2010
).
61.
X.
Wang
,
M.
In
,
C.
Blanc
,
A.
Würger
,
M.
Nobili
, and
A.
Stocco
, “
Janus colloids actively rotating on the surface of water
,”
Langmuir
33
,
13766
(
2017
).
62.
M.
Morozov
and
S.
Michelin
, “
Nonlinear dynamics of a chemically-active drop: From steady to chaotic self-propulsion
,”
J. Chem. Phys.
150
,
044110
(
2019
).
63.
A.
Ajdari
and
L.
Bocquet
, “
Giant amplification of interfacially driven transport by hydrodynamic slip: Diffusio-osmosis and beyond
,”
Phys. Rev. Lett.
96
,
186102
(
2006
).
64.
D.
Myers
,
Surfaces, Interfaces, and Colloids
, 2nd ed. (
Wiley-VCH
,
1999
).
65.
A. H.
Saberi
,
Y.
Fang
, and
D. J.
McClements
, “
Effect of glycerol on formation, stability, and properties of vitamin-E enriched nanoemulsions produced using spontaneous emulsification
,”
J. Colloid Interface Sci.
411
,
105
(
2013
).

Supplementary Material

You do not currently have access to this content.