Epidemic models do not account for the effects of climate conditions on the transmission dynamics of viruses. This study presents the vital relationship between weather seasonality, airborne virus transmission, and pandemic outbreaks over a whole year. Using the data obtained from high-fidelity multi-phase, fluid dynamics simulations, we calculate the concentration rate of Coronavirus particles in contaminated saliva droplets and use it to derive a new Airborne Infection Rate (AIR) index. Combining the simplest form of an epidemiological model, the susceptible–infected–recovered, and the AIR index, we show through data evidence how weather seasonality induces two outbreaks per year, as it is observed with the COVID-19 pandemic worldwide. We present the results for the number of cases and transmission rates for three cities, New York, Paris, and Rio de Janeiro. The results suggest that two pandemic outbreaks per year are inevitable because they are directly linked to what we call weather seasonality. The pandemic outbreaks are associated with changes in temperature, relative humidity, and wind speed independently of the particular season. We propose that epidemiological models must incorporate climate effects through the AIR index.

1.
WHO
, “Coronavirus disease (covid-19),”
World Health Organization
,
2020
.
2.
M.
Chinazzi
,
J. T.
Davis
,
M.
Ajelli
,
C.
Gioannini
,
M.
Litvinova
,
S.
Merler
,
A.
Pastore y Piontti
,
K.
Mu
,
L.
Rossi
,
K.
Sun
,
C.
Viboud
,
X.
Xiong
,
H.
Yu
,
M. E.
Halloran
,
I. M.
Longini
, and
A.
Vespignani
, “
The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak
,”
Science
368
,
395
400
(
2020
).
3.
J.
Dehning
,
J.
Zierenberg
,
F. P.
Spitzner
,
M.
Wibral
,
J. P.
Neto
,
M.
Wilczek
, and
V.
Priesemann
, “
Inferring change points in the spread of COVID-19 reveals the effectiveness of interventions
,”
Science
369
,
eabb9789
(
2020
).
4.
M.
Enserink
and
K.
Kupferschmidt
, “
With COVID-19, modeling takes on life and death importance
,”
Science
367
,
1414
1415
(
2020
).
5.
C. J. E.
Metcalf
,
D. H.
Morris
, and
S. W.
Park
, “
Mathematical models to guide pandemic response
,”
Science
369
,
368
369
(
2020
).
6.
I.
Holmdahl
and
C.
Buckee
, “
Wrong but useful—What COVID-19 epidemiologic models can and cannot tell us
,”
N. Engl. J. Med.
384
,
303
(
2020
).
7.
T.
Carletti
,
D.
Fanelli
, and
F.
Piazza
, “
COVID-19: The unreasonable effectiveness of simple models
,”
Chaos, Solitons Fractals
5
,
100034
(
2020
).
8.
W. O.
Kermack
,
A. G.
McKendrick
, and
G. T.
Walker
, “
A contribution to the mathematical theory of epidemics
,”
Proc. R. Soc. London, Ser. A
115
,
700
721
(
1927
).
9.
T.
Heldt
, “
Fluid dynamics of disease transmission
,”
Sci. Transl. Med.
8
,
328ec36
(
2016
).
10.
T.
Dbouk
and
D.
Drikakis
, “
On coughing and airborne droplet transmission to humans
,”
Phys. Fluids
32
,
053310
(
2020
).
11.
T.
Dbouk
and
D.
Drikakis
, “
Weather impact on airborne coronavirus survival
,”
Phys. Fluids
32
,
093312
(
2020
).
12.
X.
Shao
and
X.
Li
, “
COVID-19 transmission in the first presidential debate in 2020
,”
Phys. Fluids
32
,
115125
(
2020
).
13.
H.
Li
,
F. Y.
Leong
,
G.
Xu
,
Z.
Ge
,
C. W.
Kang
, and
K. H.
Lim
, “
Dispersion of evaporating cough droplets in tropical outdoor environment
,”
Phys. Fluids
32
,
113301
(
2020
).
14.
M. A.
Kanso
,
J. H.
Piette
,
J. A.
Hanna
, and
A. J.
Giacomin
, “
Coronavirus rotational diffusivity
,”
Phys. Fluids
32
,
113101
(
2020
).
15.
D.
Fontes
,
J.
Reyes
,
K.
Ahmed
, and
M.
Kinzel
, “
A study of fluid dynamics and human physiology factors driving droplet dispersion from a human sneeze
,”
Phys. Fluids
32
,
111904
(
2020
).
16.
R.
Bhardwaj
and
A.
Agrawal
, “
How coronavirus survives for days on surfaces
,”
Phys. Fluids
32
,
111706
(
2020
).
17.
T.
Dbouk
and
D.
Drikakis
, “
On respiratory droplets and face masks
,”
Phys. Fluids
32
,
063303
(
2020
).
18.
G.
Harper
, “
Airborne micro-organisms: Survival tests with four viruses
,”
J. Hyg.
59
,
479
486
(
1961
).
19.
S. J.
Webb
,
R.
Bather
, and
R. W.
Hodges
, “
The effect of relative humidity and inositol on air-borne viruses
,”
Can. J. Microbiol.
9
,
87
92
(
1963
).
20.
A.
Donaldson
and
N.
Ferris
, “
The survival of some air-borne animal viruses in relation to relative humidity
,”
Vet. Microbiol.
1
,
413
420
(
1976
).
21.
W.
Yang
and
L.
Marr
, “
Mechanisms by which ambient humidity may affect viruses in aerosols
,”
Appl. Environ. Microbiol.
78
,
6781
(
2012
).
22.
Z.
Bolashikov
and
A.
Melikov
, “
Methods for air cleaning and protection of building occupants from airborne pathogens
,”
Build. Environ.
44
,
1378
1385
(
2009
).
23.
M. A.
Kanso
,
A. J.
Giacomin
,
C.
Saengow
, and
J. H.
Piette
, “
Macromolecular architecture and complex viscosity
,”
Phys. Fluids
31
,
087107
(
2019
).
24.
K. K.-W.
To
,
O. T.-Y.
Tsang
,
C. C.-Y.
Yip
,
K.-H.
Chan
,
T.-C.
Wu
,
J. M.-C.
Chan
,
W.-S.
Leung
,
T. S.-H.
Chik
,
C. Y.-C.
Choi
,
D. H.
Kandamby
,
D. C.
Lung
,
A. R.
Tam
,
R. W.-S.
Poon
,
A. Y.-F.
Fung
,
I. F.-N.
Hung
,
V. C.-C.
Cheng
,
J. F.-W.
Chan
, and
K.-Y.
Yuen
, “
Consistent detection of 2019 novel coronavirus in saliva
,”
Clin. Infect. Dis.
71
,
841
(
2020
).
25.
R.
Zhang
,
Y.
Li
,
A. L.
Zhang
,
Y.
Wang
, and
M. J.
Molina
, “
Identifying airborne transmission as the dominant route for the spread of COVID-19
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
14857
14863
(
2020
).
26.
R.
Xu
,
B.
Cui
,
X.
Duan
,
P.
Zhang
,
X.
Zhou
, and
Q.
Yuan
, “
Saliva: Potential diagnostic value and transmission of 2019-nCoV
,”
Int. J. Oral Sci.
12
,
11
(
2020
).
27.
N.
L’Helgouach
,
P.
Champigneux
,
F.
Santos-Schneider
,
L.
Molina
,
J.
Espeut
,
M.
Alali
,
J.
Baptiste
,
L.
Cardeur
,
B.
Dubuc
,
V.
Foulongne
,
F.
Galtier
,
A.
Makinson
,
G.
Marin
,
M.-C.
Picot
,
A.
Prieux-Lejeune
,
M.
Quenot
,
F. J.
Checa-Robles
,
N.
Salvetat
,
D.
Vetter
,
J.
Reynes
, and
F.
Molina
, “
EasyCOV: Lamp based rapid detection of SARS-CoV-2 in saliva
,” medRxiv:20117291 (
2020
).
28.
L.
Azzi
,
G.
Carcano
,
F.
Gianfagna
,
P.
Grossi
,
D. D.
Gasperina
,
A.
Genoni
,
M.
Fasano
,
F.
Sessa
,
L.
Tettamanti
,
F.
Carinci
,
V.
Maurino
,
A.
Rossi
,
A.
Tagliabue
, and
A.
Baj
, “
Saliva is a reliable tool to detect SARS-CoV-2
,”
J. Infect.
81
,
e45
e50
(
2020
).
29.
B.
Neuman
and
M.
Buchmeier
, “
Chapter one—Supramolecular architecture of the coronavirus particle
,” in
Coronaviruses
, Advances in Virus Research Vol. 96, edited by
J.
Ziebuhr
(
Academic Press
,
2016
), pp.
1
27
.
30.
D.
Schoeman
and
B.
Fielding
, “
Coronavirus envelope protein: Current knowledge
,”
Virol. J.
16
,
69
(
2019
).
31.
G.
Pabst
,
A.
Hodzic
,
J.
Štrancar
,
S.
Danner
,
M.
Rappolt
, and
P.
Laggner
, “
Rigidification of neutral lipid bilayers in the presence of salts
,”
Biophys. J.
93
,
2688
2696
(
2007
).
32.
J. P.
Ioannidis
,
S.
Cripps
, and
M. A.
Tanner
, “
Forecasting for COVID-19 has failed
,”
Int. J. Forecasting
(published online,
2020
).
You do not currently have access to this content.