Superfluid helium-4 is characterized by extremely small values of kinematic viscosity, and its thermal conductivity can be huge, orders of magnitude larger than that of water or air. Additionally, quantum vortices may exist within the fluid. Therefore, its behavior cannot be explained by using the classical tools of Newtonian fluid mechanics, and, over the years, a few alternative models have been proposed. In order to highlight similarities and differences between these models, we recast them within a unifying framework, the general equation for non-equilibrium reversible-irreversible coupling (GENERIC). We begin by comparing the original two-fluid model, developed by Tisza and Landau, with the Hall–Vinen–Bekarevich–Khalatnikov model, both prescribing two types of fluid motion and two fluid densities, at flow scales appreciably larger than the typical distance between quantum vortices. We find from the geometrical structure of the models that only one fluid density plays the role of state variable, which should be taken into account when choosing an adequate expression for the free energy. We also recast within the GENERIC framework the one-fluid model of superfluid helium-4, where the inviscid component of two-fluid models is replaced by a caloric quantity, such as entropy. We find that the corresponding geometrical structures are analogous, with the roles of density and entropy swapped. In short, our work demonstrates that the studied models are compatible with each other, at least when focusing on the reversible parts of the models.

1.
S. R.
de Groot
and
P.
Mazur
,
Non-Equilibrium Thermodynamics
(
Dover Publications
,
New York
,
1984
).
2.
S.
Godunov
,
T.
Mikhailova
, and
E.
Romenskii
, “
Systems of thermodynamically coordinated laws of conservation invariant under rotations
,”
Sib. Math. J.
37
,
690
(
1996
).
3.
D.
Jou
,
J.
Casas-Vázquez
, and
G.
Lebon
,
Extended Irreversible Thermodynamics
, 4th ed. (
Springer-Verlag
,
New York
,
2010
).
4.
I. E.
Dzyaloshinskii
and
G. E.
Volovick
, “
Poisson brackets in condensed matter physics
,”
Ann. Phys.
125
,
67
(
1980
).
5.
M.
Grmela
, “
Particle and bracket formulations of kinetic equations
,”
Contemp. Math.
28
,
125
(
1984
).
6.
P. J.
Morrison
, “
Bracket formulation for irreversible classical fields
,”
Phys. Lett. A
100
,
423
(
1984
).
7.
A.
Kaufman
, “
Dissipative Hamiltonian systems: A unifying principle
,”
Phys. Lett. A
100
,
419
(
1984
).
8.
M.
Grmela
and
H. C.
Öttinger
, “
Dynamics and thermodynamics of complex fluids. I. Development of a general formalism
,”
Phys. Rev. E
56
,
6620
(
1997
).
9.
H. C.
Öttinger
and
M.
Grmela
, “
Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism
,”
Phys. Rev. E
56
,
6633
(
1997
).
10.
H.
Öttinger
,
Beyond Equilibrium Thermodynamics
(
Wiley
,
2005
).
11.
M.
Pavelka
,
V.
Klika
, and
M.
Grmela
,
Multiscale Thermo-Dynamics
(
de Gruyter
,
Berlin
,
2018
).
12.
T.
Ruggeri
and
M.
Sugiyama
,
Rational Extended Thermodynamics Beyond the Monoatomic Gas
(
Springer
,
Heidelberg
,
2015
).
13.
M.
Grmela
and
J.
Teichmann
, “
Lagrangian formulation of the Maxwell-Cattaneo hydrodynamics
,”
Int. J. Eng. Sci.
21
,
297
(
1983
).
14.
C. F.
Barenghi
,
L.
Skrbek
, and
K. R.
Sreenivasan
, “
Introduction to quantum turbulence
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
4647
(
2014
).
15.
M. S.
Mongiovì
,
D.
Jou
, and
M.
Sciacca
, “
Non-equilibrium thermodynamics, heat transport and thermal waves in laminar and turbulent superfluid helium
,”
Phys. Rep.
726
,
1
(
2018
).
16.
L.
Landau
, “
Theory of the superfluidity of helium II
,”
Phys. Rev.
60
,
356
(
1941
).
17.
R. J.
Donnelly
, “
The two-fluid theory and second sound in liquid helium
,”
Phys. Today
62
(
10
),
34
(
2009
).
18.
I. L.
Bekarevich
and
I. M.
Khalatnikov
,
Sov. Phys. JETP
13
,
643
(
1961
).
19.
H. E.
Hall
,
W. F.
Vinen
, and
D.
Shoenberg
,
Proc. R. Soc. London. Ser. A. Math. Phys. Sci.
238
,
215
(
1956
).
20.
D. D.
Holm
, “
Introduction to HVBK dynamics
,” in
Quantized Vortex Dynamics and Superfluid Turbulence
, edited by
C. F.
Barenghi
,
R. J.
Donnelly
, and
W. F.
Vinen
(
Springer
,
Berlin/Heidelberg
,
2001
), pp.
114
130
.
21.
J. I.
Polanco
and
G.
Krstulovic
, “
Inhomogeneous distribution of particles in coflow and counterflow quantum turbulence
,”
Phys. Rev. Fluids
5
,
032601(R)
(
2020
).
22.
M.
Mongioví
, “
Superfluidity and entropy conservation in extended thermodynamics
,”
J. Non-Equilib. Thermodyn.
16
,
225
(
1991
).
23.
L.
Tisza
, “
Transport phenomena in helium II
,”
Nature
141
,
913
(
1938
).
24.
I.
Khalatnikov
,
An Introduction to the Theory of Superfluidity
(
Avalon Publishing
,
1989
).
25.
L. D.
Landau
,
In Collected Papers of L.D. Landau
, edited by
D.
ter Haar
(
Pergamon
,
1965
), pp.
301
330
.
26.
A.
Beris
and
B.
Edwards
,
Thermodynamics of Flowing Systems
(
Oxford University Press
,
Oxford
,
1994
).
27.
M.
Pavelka
,
I.
Peshkov
, and
V.
Klika
, “
On Hamiltonian continuum mechanics
,”
Phys. D: Nonlinear Phenom.
408
,
132510
(
2020
).
28.
L.
Landau
and
E.
Lifshitz
,
Quantum Mechanics: Non-Relativistic Theory
(
Butterworth-Heinemann
,
1977
).
29.
L.
Landau
,
E.
Lifshitz
,
A.
Kosevich
, and
L.
Pitaevskii
,
Theory of Elasticity, Course of Theoretical Physics
(
Butterworth-Heinemann
,
1986
).
30.
D. D.
Holm
and
B. A.
Kupershmidt
, “
Superfluid plasmas: Multivelocity nonlinear hydrodynamics of superfluid solutions with charged condensates coupled electromagnetically
,”
Phys. Rev. A
36
,
3947
(
1987
).
31.
M.
Grmela
, “
Hamiltonian and thermodynamic modeling of quantum turbulence
,”
J. Stat. Phys.
141
,
318
(
2010
).
32.
S. K.
Godunov
and
E. I.
Romenskii
,
Elements of Continuum Mechanics and Conservation Laws
(
Kluwer Academic/Plenum Publishers
,
2003
).
33.
M.
Dumbser
,
I.
Peshkov
, and
E.
Romenski
, in
Theory, Numerics and Applications of Hyperbolic Problems II. HYP 2016
, Springer Proceedings in Mathematics and Statistics, Vol.
237
(
Springer
,
2018
), pp.
451
463
.
34.
M.
Dumbser
,
I.
Peshkov
,
E.
Romenski
, and
O.
Zanotti
, “
High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: Viscous heat-conducting fluids and elastic solids
,”
J. Comput. Phys.
314
,
824
(
2016
).
35.
M.
Dumbser
,
I.
Peshkov
,
E.
Romenski
, and
O.
Zanotti
, “
High order ADER schemes for a unified first order hyperbolic formulation of Newtonian continuum mechanics coupled with electro-dynamics
,”
J. Comput. Phys.
348
,
298
(
2017
).
36.
I.
Peshkov
,
M.
Pavelka
,
E.
Romenski
, and
M.
Grmela
, “
Continuum mechanics and thermodynamics in the Hamilton and the Godunov-type formulations
,”
Continuum Mech. Thermodyn.
30
,
1343
(
2018
).
37.
E.
Romensky
, “
Hyperbolic systems of thermodynamically compatible conservation laws in continuum mechanics
,”
Math. Comput. Modell.
28
,
115
(
1998
).
38.
M.
Kroeger
and
M.
Huetter
,
Comput. Phys. Commun.
181
,
2149
2157
(
2010
).
39.
J.-M.
Lévy-Leblond
,
Galilei Group and Galilean Invariance
(
Elsevier
,
1971
), pp.
221
299
.
40.
I.
Amelio
,
A.
Minguzzi
,
M.
Richard
, and
I.
Carusotto
, “
Galilean boosts and superfluidity of resonantly driven polariton fluids in the presence of an incoherent reservoir
,”
Phys. Rev. Res.
2
,
023158
(
2020
).
41.
M.
Szücs
,
M.
Pavelka
,
R.
Kovács
,
T.
Fülöp
,
P.
Ván
, and
M.
Grmela
, “
A case study of non-Fourier heat conduction using internal variables and GENERIC
,”
J. Non-Equilib. Thermodyn.
0
,
000010151520210022
(
2021
).
42.
E.
Feireisl
,
T.
Karper
, and
M.
Pokorný
,
Mathematical Theory of Compressible Viscous Fluids: Analysis and Numerics
, Advances in Mathematical Fluid Mechanics (
Springer International Publishing
,
2016
).
43.
S.
Van Sciver
,
Helium Cryogenics
, International Cryogenics Monograph Series (
Springer
,
New York
,
2012
).
44.
H.
Godfrin
,
K.
Beauvois
,
A.
Sultan
,
E.
Krotscheck
,
J.
Dawidowski
,
B.
Fåk
, and
J.
Ollivier
, “
Dispersion relation of Landau elementary excitations and thermodynamic properties of superfluid He4
,”
Phys. Rev. B
103
,
104516
(
2021
).
45.
M.
Pavelka
,
V.
Klika
, and
M.
Grmela
, “
Time reversal in nonequilibrium thermodynamics
,”
Phys. Rev. E
90
,
062131
(
2014
).
46.
K.
Henderson
, “
Using the HVBK model to investigate the Couette flow of helium II
,” in
Quantized Vortex Dynamics and Superfluid Turbulence
, edited by
C. F.
Barenghi
,
R. J.
Donnelly
, and
W. F.
Vinen
(
Springer
,
Berlin/Heidelberg
,
2001
), pp.
138
145
.
47.
O.
Outrata
,
M.
Pavelka
,
J.
Hron
,
M. L.
Mantia
,
J.
Polanco
, and
G.
Krstulovic
, “
On the determination of vortex ring vorticity using Lagrangian particles
,”
J. Fluid Mech.
924
,
A44
(
2021
).
48.
C.
Barenghi
, “
Introduction to superfluid vortices and turbulence
,” in
Quantized Vortex Dynamics and Superfluid Turbulence
, edited by
C. F.
Barenghi
,
R. J.
Donnelly
, and
W. F.
Vinen
(
Springer
,
Berlin/Heidelberg
,
2001
), pp.
3
13
.
49.
V.
Klika
,
M.
Pavelka
,
P.
Vágner
, and
M.
Grmela
, “
Dynamic maximum entropy reduction
,”
Entropy
21
,
715
(
2019
).
50.
P.
Švančara
,
M.
Pavelka
, and
M. L.
Mantia
, “
An experimental study of turbulent vortex rings in superfluid 4He
,”
J. Fluid Mech.
88925
,
A24
(
2020
).
51.
I.
Müller
and
T.
Ruggeri
,
Rational Extended Thermodynamics
, Springer Tracts in Natural Philosophy (
Springer
,
1998
).
52.
M.
Pavelka
,
V.
Klika
,
O.
Esen
, and
M.
Grmela
, “
A hierarchy of Poisson brackets in non-equilibrium thermodynamics
,”
Phys. D: Nonlinear Phenom.
335
,
54
(
2016
).
53.
M.
Grmela
,
G.
Lebon
, and
C.
Dubois
, “
Multiscale thermodynamics and mechanics of heat
,”
Phys. Rev. E
83
,
061134
(
2011
).
54.
R.
Peierls
, “
Zur kinetischen Theorie der Wärmeleitung in Kristallen
,”
Ann. Phys.
395
,
1055
(
1929
).
55.
I.
Müller
,
Thermodynamics
, Interaction of Mechanics and Mathematics Series (
Pitman
,
1985
).
56.
M.
Fecko
,
Differential Geometry and Lie Groups for Physicists
(
Cambridge University Press
,
2006
).
57.
J.
Marsden
,
T.
Ratiu
, and
A.
Weinstein
, “
Semidirect products and reduction in mechanics
,”
Trans. Am. Math. Soc.
281
,
147
(
1984
).
58.
O.
Esen
and
H.
Gümral
, “
Tulczyjew's triplet for Lie groups I: Trivializations and reductions
,”
J. Lie Theory
24
,
1115
(
2014
).
59.
P.
Vágner
,
M.
Pavelka
, and
O.
Esen
, “
Multiscale thermodynamics of charged mixtures
,”
Continuum Mech. Thermodyn.
33
,
237
(
2021
).
60.
C.
Cattaneo
,
Atti del Seminario Matematico e Fisico della Universita di Modena
3
,
83
(
1948
).
61.
H.
Callen
,
Thermodynamics: An Introduction to the Physical Theories of Equilibrium Thermostatics and Irreversible Thermodynamics
(
Wiley
,
1960
).
62.
A.
Berezovski
and
P.
Ván
,
Internal Variables in Thermoelasticity, Solid Mechanics and Its Applications
(
Springer International Publishing
,
2017
).
63.
A.
Malyshev
and
E.
Romenskii
, “
Hyperbolic equations for heat transfer. Global solvability of the Cauchy problem
,”
Sib. Math. J.
27
,
734
(
1987
).
64.
L.
Landau
and
E.
Lifshitz
,
Fluid Mechanics
, Version 6 (
Elsevier Science
,
2013
).
65.
C.
Zhang
,
S.
Chen
, and
Z.
Guo
, “
Heat vortices of ballistic and hydrodynamic phonon transport in two-dimensional materials
,”
Int. J. Heat Mass Transfer
176
,
121282
(
2021
).
66.
M.
Mongiovi
,
J. Non-Equilib. Thermodyn.
18
,
147
(
2009
).
67.
K. W.
Schwarz
, “
Three-dimensional vortex dynamics in superfluid He4: Line-line and line-boundary interactions
,”
Phys. Rev. B
31
,
5782
(
1985
).
68.
A.
Villois
,
G.
Krstulovic
,
D.
Proment
, and
H.
Salman
, “
A vortex filament tracking method for the Gross–Pitaevskii model of a superfluid
,”
J. Phys. A: Math. Theor.
49
,
415502
(
2016
).
69.
H. D. I.
Abarbanel
,
R.
Brown
, and
Y. M.
Yang
, “
Hamiltonian formulation of inviscid flows with free boundaries
,”
Phys. Fluids
31
,
2802
(
1988
).
70.
M.
Grmela
, “
Multiscale equilibrium and nonequilibrium thermodynamics in chemical engineering
,” in
Advances in Chemical Engineering
, edited by
D. H.
West
and
G.
Yablonsky
(
Academic Press
,
2010
), vol. 39, pp.
75
129
.
71.
M.
Pavelka
,
V.
Klika
, and
M.
Grmela
,
J. Stat. Phys.
181
(
1
),
19
52
(
2020
).
72.
A.
Janečka
and
M.
Pavelka
, “
Non-convex dissipation potentials in multiscale non-equilibrium thermodynamics
,”
Continuum Mech. Thermodyn.
30
,
917
(
2018
).
73.
E.
Toro
,
Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction
(
Springer
,
Berlin/Heidelberg
,
2009
).
74.
A.
Reinarz
,
D. E.
Charrier
,
M.
Bader
,
L.
Bovard
,
M.
Dumbser
,
K.
Duru
,
F.
Fambri
,
A.-A.
Gabriel
,
J.-M.
Gallard
,
S.
Köppel
,
L.
Krenz
,
L.
Rannabauer
,
L.
Rezzolla
,
P.
Samfass
,
M.
Tavelli
, and
T.
Weinzierl
, “
ExaHyPE: An engine for parallel dynamically adaptive simulations of wave problems
,”
Comput. Phys. Commun.
254
,
107251
(
2020
).
75.
Note that calling field vs a velocity might be problematic in a non-Euclidean space, where vectors and covectors must be distinguished, because vs is actually a covector field (like momentum), not a vector field (like velocity).
76.
Note that we assume that the energy density depends on ρ and s only algebraically. Dependence on the gradient of the mass density would lead to Korteweg-like terms11 while dependence on the gradient of entropy would lead to weakly non-local heat conduction.41 
77.
Note that the pressure loses its thermodynamic interpretation in the incompressible case and it is reconstructed from the requirement that the velocity fields be divergence-free.42 
78.
Note that the fraction on the right hand side is interpreted component by component, since the quantities in the numerator and denominator are collinear in the case of isotropic e0.
You do not currently have access to this content.