Understanding the mass transfer between surface and subsurface water is essential in the fluvial environment. Transport across the sediment–water interface (SWI) can be strongly influenced by pore-scale vortices and coherent turbulent structures (sweep and ejection) near the interface. However, the functions of these hydrodynamic structures over the exchange at the interface and pore water movement in the bed are still unclear. In this paper, the pore-scale flow and transport across the SWI under dispersive and turbulent regimes were studied. The results show that pore-scale vortices are the main hydrodynamic form at the SWI in dispersive regimes, creating a transition layer and impeding interfacial transport. Periodic sweep and ejection prevail in turbulent regimes, which alter the structures of pore scale vortices, enhance interfacial transport, generate periodic pressure eruptions at the interface, and pulse the pore water to move vertically and periodically in the bed. Different forms of the dominant hydrodynamics structures near the interface will affect the residence time and trajectories of solutes in the bed. In dispersive regimes, the residence time of solutes exhibits a positive correlation with the Reynolds number due to the increasing penetration of solutes, while, in turbulent regimes, this correlation turns negative because of the unchanged penetration depth of solutes. The mechanism demonstration from numerical simulations clarifies the functions of pore-scale vortices and coherent turbulent structures on mass transfer between the surface and subsurface water, which can enhance the understanding of the role of sediments in the aquatic ecosystem.

1.
S. B.
Grant
and
I.
Marusic
, “
Crossing turbulent boundaries: Interfacial flux in environmental flows
,”
Environ. Sci. Technol.
45
,
7107
(
2011
).
2.
S. B.
Grant
,
J. D.
Gomez‐Velez
, and
M.
Ghisalberti
, “
Modeling the effects of turbulence on hyporheic exchange and local‐to‐global nutrient processing in streams
,”
Water Resour. Res.
54
,
5883
, (
2018
).
3.
M.
Huettel
,
P.
Berg
, and
J. E.
Kostka
, “
Benthic exchange and biogeochemical cycling in permeable sediments
,”
Annu. Rev. Mar. Sci.
6
,
23
(
2014
).
4.
F.
Boano
,
J. W.
Harvey
,
A.
Marion
,
A. I.
Packman
,
R.
Revelli
,
L.
Ridolfi
, and
A.
Wörman
, “
Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications
,”
Rev. Geophys.
52
,
603
, (
2014
).
5.
J. E.
Lawrence
,
M. E.
Skold
,
F. A.
Hussain
,
D. R.
Silverman
,
V. H.
Resh
,
D. L.
Sedlak
,
R. G.
Luthy
, and
J. E.
McCray
, “
Hyporheic zone in urban streams: A review and opportunities for enhancing water quality and improving aquatic habitat by active management
,”
Environ. Eng. Sci.
30
,
480
(
2013
).
6.
H. K.
Marchant
,
G.
Lavik
,
M.
Holtappels
, and
M. M. M.
Kuypers
, “
The fate of nitrate in intertidal permeable sediments
,”
PLoS One
9
,
e104517
(
2014
).
7.
A.
Li
,
A. F.
Aubeneau
,
D.
Bolster
,
J. L.
Tank
, and
A. I.
Packman
, “
Covariation in patterns of turbulence‐driven hyporheic flow and denitrification enhances reach‐scale nitrogen removal
,”
Water Resour. Res.
53
,
6927
, (
2017
).
8.
H.
Gao
,
M.
Matyka
,
B.
Liu
,
A.
Khalili
,
J. E.
Kostka
,
G.
Collins
,
S.
Jansen
,
M.
Holtappels
,
M. M.
Jensen
,
T. H.
Badewien
,
M.
Beck
,
M.
Grunwald
,
D.
de Beer
,
G.
Lavik
, and
M. M. M.
Kuypers
,
Limnol. Oceanogr.
Intensive and extensive nitrogen loss from intertidal permeable sediments of the Wadden Sea
,”
57
,
185
(
2012
).
9.
Q.
Jiang
,
G.
Jin
,
H.
Tang
,
J.
Xu
,
Q.
Wei
, and
L.
Li
, “
Nitrate removal processes in the riverbed during a single-peak flood event
,”
Hydrol. Process.
35
,
e14041
(
2021
).
10.
T. J.
Battin
,
K.
Besemer
,
M. M.
Bengtsson
,
A. M.
Romani
, and
A. I.
Packmann
, “
The ecology and biogeochemistry of stream biofilms
,”
Nat. Rev. Microbiol.
14
,
251
(
2016
).
11.
F.
Mermillod-Blondin
, “
The functional significance of bioturbation and biodeposition on biogeochemical processes at the water–sediment interface in freshwater and marine ecosystems
,”
J. North Am. Benthol. Soc.
30
,
770
(
2011
).
12.
P. J.
Mulholland
,
C. S.
Fellows
,
J. L.
Tank
,
N. B.
Grimm
,
J. R.
Webster
,
S. K.
Hamilton
,
E.
Martí
,
L.
Ashkenas
,
W. B.
Bowden
,
W. K.
Dodds
,
W. H.
Mcdowell
,
M. J.
Paul
, and
B. J.
Peterson
, “
Inter-biome comparison of factors controlling stream metabolism
,”
Freshwater Biol.
46
,
1503
(
2001
).
13.
B. L.
O'Connor
and
J. W.
Harvey
, “
The economics of time delayed salinity impact management in the River Murray
,”
Water Resour. Res.
44
,
W03401
, (
2008
).
14.
S. B.
Grant
,
M. J.
Stewardson
, and
I.
Marusic
, “
Effective diffusivity and mass flux across the sediment-water interface in streams
,”
Water Resour. Res.
48
,
W05548
, (
2012
).
15.
A. I.
Packman
,
M.
Salehin
, and
M.
Zaramella
, “
Hyporheic exchange with gravel beds: Basic hydrodynamic interactions and bedform-induced advective flows
,”
J. Hydraul. Eng.
130
,
647
(
2004
).
16.
J. J.
Voermans
,
M.
Ghisalberti
, and
G. N.
Ivey
, “
A model for mass transport across the sediment‐water interface
,”
Water Resour. Res.
54
,
2799
, (
2018
).
17.
G.
Blois
,
G. H.
Sambrook Smith
,
J. L.
Best
,
R. J.
Hardy
, and
J. R.
Lead
, “
Quantifying the dynamics of flow within a permeable bed using time-resolved endoscopic particle imaging velocimetry (EPIV)
,”
Exp. Fluids
53
,
51
(
2012
).
18.
T.
Kim
,
G.
Blois
,
J. L.
Best
, and
K. T.
Christensen
, “
Experimental study of turbulent flow over and within cubically packed walls of spheres: Effects of topography, permeability and wall thickness
,”
Int. J. Heat Fluid Flow
73
,
16
(
2018
).
19.
X.
Han
,
H.
Fang
,
G.
He
, and
D.
Reible
, “
Effects of roughness and permeability on solute transfer at the sediment water interface
,”
Water Res.
129
,
39
(
2018
).
20.
G. J.
He
,
X.
Han
,
H. W.
Fang
,
D.
Reible
, and
L.
Huang
, “
Effects of roughness Reynolds number on scalar transfer mechanisms at the sediment‐water interface
,”
Water Resour. Res.
55
,
6811
, (
2019
).
21.
J. S.
Kim
and
P. K.
Kang
, “
Anomalous transport through free-flow-porous media interface: Pore-scale simulation and predictive modeling
,”
Adv. Water Resour.
135
,
103467
(
2020
).
22.
K. R.
Roche
,
G.
Blois
,
J. L.
Best
,
K. T.
Christensen
,
A. F.
Aubeneau
, and
A. I.
Packman
, “
Turbulence links momentum and solute exchange in coarse‐grained streambeds
,”
Water Resour. Res.
54
,
3225
, (
2018
).
23.
T.
Kim
,
G.
Blois
,
J. L.
Best
, and
K. T.
Christensen
, “
Experimental evidence of amplitude modulation in permeable-wall turbulence
,”
J. Fluid Mech.
887
,
A3
(
2020
).
24.
J. J.
Voermans
,
M.
Ghisalberti
, and
G. N.
Ivey
, “
The hydrodynamic response of the sediment‐water interface to coherent turbulent motions
,”
Geophys. Res. Lett.
45
,
10520
, (
2018
).
25.
G.
Blois
,
J. L.
Best
,
K. T.
Christensen
,
R. J.
Hardy
, and
G. H. S.
Smith
, in
Coherent Flow Structures at Earth's Surface
(
John Wiley & Sons, Ltd
,
Chichester
,
UK
,
2013
), pp.
43
62
.
26.
G.
Alfonsi
,
D.
Ferraro
,
A.
Lauria
, and
R.
Gaudio
, “
Large-eddy simulation of turbulent natural-bed flow
,”
Phys. Fluids
31
,
085105
(
2019
).
27.
F.
Coscarella
,
N.
Penna
,
S.
Servidio
, and
R.
Gaudio
, “
Turbulence anisotropy and intermittency in open-channel flows on rough beds
,”
Phys. Fluids
32
,
115127
(
2020
).
28.
E.
Padhi
,
N.
Penna
,
S.
Dey
, and
R.
Gaudio
, “
Near-bed turbulence structures in water-worked and screeded gravel-bed flows
,”
Phys. Fluids
31
,
045107
(
2019
).
29.
J. J.
Voermans
,
M.
Ghisalberti
, and
G. N.
Ivey
, “
The variation of flow and turbulence across the sediment–water interface
,”
J. Fluid Mech.
824
,
413
(
2017
).
30.
C.
Manes
,
D.
Pokrajac
,
I.
McEwan
, and
V.
Nikora
, “
Turbulence structure of open channel flows over permeable and impermeable beds: A comparative study
,”
Phys. Fluids
21
,
125109
(
2009
).
31.
S.
Vollmer
,
F. D. L.
Santos
,
H.
Daebel
,
G.
Ku
,
F. D.
Ramos
, and
G.
Kuhn
, “
Micro scale exchange processes between surface and subsurface water
,”
J. Hydrol.
269
,
3
(
2002
).
32.
F.
Coscarella
,
S.
Servidio
,
D.
Ferraro
,
V.
Carbone
, and
R.
Gaudio
, “
Turbulent energy dissipation rate in a tilting flume with a highly rough bed
,”
Phys. Fluids
29
,
085101
(
2017
).
33.
K.
Wang
,
Q.
Li
,
Q.
Zhou
, and
Y.
Dong
, “
The Influence of anisotropic sediment layer on dissolved oxygen transfer in turbulent flows
,”
Water Resour. Res.
57
,
e2020WR027932
, (
2021
).
34.
C.
Scalo
,
U.
Piomelli
, and
L.
Boegman
, “
High-Schmidt-number mass transport mechanisms from a turbulent flow to absorbing sediments
,”
Phys. Fluids
24
,
085103
(
2012
).
35.
M.
Chandesris
,
A.
D'Hueppe
,
B.
Mathieu
,
D.
Jamet
, and
B.
Goyeau
, “
Direct numerical simulation of turbulent heat transfer in a fluid-porous domain
,”
Phys. Fluids
25
,
125110
(
2013
).
36.
G.
Shen
,
J.
Yuan
, and
M. S.
Phanikumar
, “
Direct numerical simulations of turbulence and hyporheic mixing near sediment–water interfaces
,”
J. Fluid Mech.
892
,
A20
(
2020
).
37.
C.
Guo
,
Y.
Li
,
X.
Nian
,
M.
Xu
,
H.
Liu
, and
Y.
Wang
, “
Experimental study on the slip velocity of turbulent flow over and within porous media
,”
Phys. Fluids
32
,
015111
(
2020
).
38.
T.
Sherman
,
K. R.
Roche
,
D. H.
Richter
,
A. I.
Packman
, and
D.
Bolster
, “
A Dual Domain stochastic Lagrangian model for predicting transport in open channels with hyporheic exchange
,”
Adv. Water Resour.
125
,
57
(
2019
).
39.
I.
Ginzburg
and
D.
D'Humières
, “
Multireflection boundary conditions for lattice Boltzmann models
,”
Phys. Rev. E
68
,
066614
(
2003
).
40.
C.
Pan
,
L. S.
Luo
, and
C. T.
Miller
, “
An evaluation of lattice Boltzmann schemes for porous medium flow simulation
,”
Comput. Fluids
35
,
898
(
2006
).
41.
Z.
Chai
,
B.
Shi
,
J.
Lu
, and
Z.
Guo
, “
Non-Darcy flow in disordered porous media: A lattice Boltzmann study
,”
Comput. Fluids
39
,
2069
(
2010
).
42.
E.
Fattahi
,
C.
Waluga
,
B.
Wohlmuth
,
U.
Rüde
,
M.
Manhart
, and
R.
Helmig
, “
Lattice Boltzmann methods in porous media simulations: From laminar to turbulent flow
,”
Comput. Fluids
140
,
247
(
2016
).
43.
Y.
Chen
,
G.
Jin
,
P.
Zhang
,
S. A.
Galindo‐Torres
,
A.
Scheuermann
, and
L.
Li
, “
Intercomparison of boundary schemes in Lattice Boltzmann method for flow simulation in porous media
,”
Int. J. Numer. Methods Fluids
2009-2029
,
4858
(
2020
).
44.
R. S.
Maier
,
D. M.
Kroll
,
R. S.
Bernard
,
S. E.
Howington
,
J. F.
Peters
, and
H. T.
Davis
, “
Pore-scale simulation of dispersion
,”
Phys. Fluids
12
,
2065
(
2000
).
45.
J.
Salles
,
J. ‐F.
Thovert
,
R.
Delannay
,
L.
Prevors
,
J. ‐L.
Auriault
, and
P. M.
Adler
, “
Taylor dispersion in porous media. Determination of the dispersion tensor
,”
Phys. Fluids A
5
,
2348
(
1993
).
46.
G.
Sole-Mari
,
D.
Fernàndez-Garcia
,
P.
Rodríguez-Escales
, and
X.
Sanchez-Vila
, “
A KDE-based random walk method for modeling reactive transport with complex kinetics in porous media
,”
Water Resour. Res.
53
,
9019
, (
2017
).
47.
A. M.
Tartakovsky
,
D. M.
Tartakovsky
, and
P.
Meakin
, “
Stochastic Langevin Model for flow and transport in porous media
,”
Phys. Rev. Lett.
101
,
044502
(
2008
).
48.
S. A.
Galindo-Torres
, “
A coupled Discrete Element Lattice Boltzmann Method for the simulation of fluid–solid interaction with particles of general shapes
,”
Comput. Methods Appl. Mech. Eng.
265
,
107
(
2013
).
49.
P.
Zhang
,
S. A. A.
Galindo-Torres
,
H.
Tang
,
G.
Jin
,
A.
Scheuermann
, and
L.
Li
, “
An efficient discrete element lattice Boltzmann model for simulation of particle-fluid, particle-particle interactions
,”
Comput. Fluids
147
,
63
(
2017
).
50.
M.
Guo
,
X.
Tang
,
Y.
Su
,
X.
Li
, and
F.
Wang
, “
Applications of Three-dimensional LBM-LES combined model for pump intakes
,”
Commun. Comput. Phys.
24
,
104
122
(
2018
).
51.
K.
Han
,
Y. T.
Feng
, and
D. R. J.
Owen
, “
Numerical simulations of irregular particle transport in turbulent flows using coupled LBM-DEM
,”
Comput. Model. Eng. Sci.
18
,
87
(
2007
).
52.
S. A.
Galindo-Torres
,
S.
Palma
,
S.
Quintero
,
A.
Scheuermann
,
X.
Zhang
,
K.
Krabbenhoft
,
M.
Ruest
, and
D.
Finn
, “
An airblast hazard simulation engine for block caving sites
,”
Int. J. Rock Mech. Min. Sci.
107
,
31
(
2018
).
53.
P.
Zhang
,
S.
Sun
,
Y.
Chen
,
S. A.
Galindo-Torres
, and
W.
Cui
, “
Coupled material point Lattice Boltzmann method for modeling fluid–structure interactions with large deformations
,”
Comput. Methods Appl. Mech. Eng.
385
,
114040
(
2021
).
54.
S.
Chen
and
G. D.
Doolen
, “
Lattice Boltzmann method for fluid flows
,”
Annu. Rev. Fluid Mech.
30
,
329
(
1998
).
55.
Y.
Chen
,
Q.
Cai
,
Z.
Xia
,
M.
Wang
, and
S.
Chen
, “
Momentum-exchange method in lattice Boltzmann simulations of particle-fluid interactions
,”
Phys. Rev. E
88
,
013303
(
2013
).
56.
X.
He
and
L.-S.
Luo
, “
Lattice Boltzmann model for the incompressible Navier–Stokes equation
,”
J. Stat. Phys.
88
,
927
(
1997
).
57.
L.
Zhang
,
Z.
Zeng
,
H.
Xie
,
Z.
Qiu
,
L.
Yao
,
Y.
Zhang
, and
Y.
Lu
, “
An alternative lattice Boltzmann model for incompressible flows and its stabilization
,”
Commun. Comput. Phys.
21
,
443
(
2017
).
58.
P. J.
Dellar
, “
Incompressible limits of lattice Boltzmann equations using multiple relaxation times
,”
J. Comput. Phys.
190
,
351
(
2003
).
59.
P.
Szymczak
and
A. J. C.
Ladd
, “
Stochastic boundary conditions to the convection-diffusion equation including chemical reactions at solid surfaces
,”
Phys. Rev. E
69
,
036704
(
2004
).
60.
K.
Timm
,
H.
Kusumaatmaja
, and
A.
Kuzmin
,
The Lattice Boltzmann Method: Principles and Practice
(
Springer
,
2016
)
61.
M. M.
Aral
and
B.
Liao
, “
Analytical solutions for two-dimensional transport equation with time-dependent dispersion coefficients
,”
J. Hydrol. Eng.
1
,
20
(
1996
).
62.
A.
Goharzadeh
,
A.
Khalili
, and
B. B.
Jørgensen
, “
Transition layer thickness at a fluid-porous interface
,”
Phys. Fluids
17
,
057102
(
2005
).
63.
I. D.
Chandler
,
I.
Guymer
,
J. M.
Pearson
, and
R.
van Egmond
, “
Vertical variation of mixing within porous sediment beds below turbulent flows
,”
Water Resour. Res.
52
,
3493
, (
2016
).
64.
W. J.
Reeder
,
A. M.
Quick
,
T. B.
Farrell
,
S. G.
Benner
,
K. P.
Feris
,
A.
Marzadri
, and
D.
Tonina
, “
Hyporheic source and sink of nitrous oxide
,”
Water Resour. Res.
54
,
5001
, (
2018
).
65.
A. M.
Quick
,
W. J.
Reeder
,
T. B.
Farrell
,
D.
Tonina
,
K. P.
Feris
, and
S. G.
Benner
, “
Controls on nitrous oxide emissions from the hyporheic zones of streams
,”
Environ. Sci. Technol.
50
,
11491
(
2016
).
66.
H.
Røy
,
M.
Huettel
, and
B. B.
Jørgensen
, “
Transmission of oxygen concentration fluctuations through the diffusive boundary layer overlying aquatic sediments
,”
Limnol. Oceanogr.
49
,
686
(
2004
).
67.
C. P.
Richardson
and
A. D.
Parr
, “
Modified Fickian model for solute uptake by runoff
,”
J. Environ. Eng.
114
,
792
809
(
1988
).
You do not currently have access to this content.