Three-dimensional numerical simulations are performed on air-breathing rotating detonation combustors with detailed H2/air chemistry. Detonation-related flow structures and pressure gain performance have been investigated. Emphasis is placed on the effects of the upstream oblique shock wave that is attached with detonation. This unsteady oblique shock wave is found to rotate along the chamber in the pre-detonation region. The angle of the upstream oblique shock wave shows a negative correlation with chamber pressure. Moreover, particle trajectory analysis shows that particles cross the unsteady upstream oblique shock wave twice or three times before being consumed by detonation, with obvious deflections in the radial direction due to the curvature effect, while particles collide with the downstream oblique shock wave in the post-detonation region once. At the exit, more than 96% of kinetic energy is still concentrated in the axial direction. Furthermore, the pressure gain performance is investigated by the integral of total pressure over the averaged area in the axial direction and individual particles. The results show that detonation-related flow structures in the current chamber configuration fail to achieve positive pressure gain. −17.2%, −16.4%, and −17.8% of total pressure gain are obtained in three numerical simulations. Further analysis shows that though the total pressure of particles increases instantly when encountering the upstream oblique shock wave, 25% of total pressure is lost before detonation combustion due to the large angle of the upstream oblique shock wave and the geometry. The cumulative effect of the pre-detonation region on the total pressure is equivalent to flows with Mach 1.94 crossing a normal shock wave.

1.
B.
Voitsekhovskii
, “
Stationary spin detonation
,”
Sov. J. Appl. Mech. Tech. Phys.
3
,
157
164
(
1960
).
2.
Y.
Liu
,
W.
Zhou
,
Y.
Yang
,
Z.
Liu
, and
J.
Wang
, “
Numerical study on the instabilities in H2-air rotating detonation engines
,”
Phys. Fluids
30
,
046106
(
2018
).
3.
J.
Koch
and
J. N.
Kutz
, “
Modeling thermodynamic trends of rotating detonation engines
,”
Phys. Fluids
32
,
126102
(
2020
).
4.
J.
Sun
,
J.
Zhou
,
S.
Liu
,
Z.
Lin
, and
W.
Lin
, “
Plume flowfield and propulsive performance analysis of a rotating detonation engine
,”
Aerosp. Sci. Technol.
81
,
383
393
(
2018
).
5.
V.
Betelin
,
V.
Nikitin
, and
E.
Mikhalchenko
, “
3D numerical modeling of a cylindrical RDE with an inner body extending out of the nozzle
,”
Acta Astronaut.
176
,
628
646
(
2020
).
6.
C.
Yan
,
H.
Teng
, and
H. D.
Ng
, “
Effects of slot injection on detonation wavelet characteristics in a rotating detonation engine
,”
Acta Astronaut.
182
,
274
285
(
2021
).
7.
Y.
Wang
and
J.
Le
, “
A rotating detonation engine using methane-ethylene mixture and air
,”
Acta Astronaut.
188
,
25
35
(
2021
).
8.
Z.
Xia
,
H.
Ma
,
G.
Ge
, and
C.
Zhou
, “
Effects of ignition condition on the initiation characteristics of rotating detonation wave in plane-radial structure
,”
Acta Astronaut.
175
,
79
89
(
2020
).
9.
S. A.
Zhdan
, “
Mathematical model of continuous detonation in an annular combustor with a supersonic flow velocity
,”
Combust., Explos., Shock Waves
44
,
690
697
(
2008
).
10.
N.
Smirnov
,
V.
Nikitin
,
L.
Stamov
,
E.
Mikhalchenko
, and
V.
Tyurenkova
, “
Rotating detonation in a ramjet engine three-dimensional modeling
,”
Aerosp. Sci. Technol.
81
,
213
224
(
2018
).
11.
N.
Smirnov
,
V.
Nikitin
,
L.
Stamov
,
E.
Mikhalchenko
, and
V.
Tyurenkova
, “
Three-dimensional modeling of rotating detonation in a ramjet engine
,”
Acta Astronaut.
163
,
168
176
(
2019
).
12.
S.
Liu
,
W.
Liu
,
L.
Jiang
, and
Z.
Lin
, “
Numerical investigation on the airbreathing continuous rotating detonation engine
,” in
Proceedings of 25th ICDERS, Leeds
(
ICDERS
,
2015
), Vol.
157
.
13.
G.
Wang
,
W.
Liu
,
S.
Liu
,
H.
Zhang
,
H.
Peng
, and
Y.
Zhou
, “
Experimental verification of cylindrical air-breathing continuous rotating detonation engine fueled by non-premixed ethylene
,”
Acta Astronaut.
189
,
722
732
(
2021
).
14.
A.
Dubrovskii
,
V.
Ivanov
,
A.
Zangiev
, and
S.
Frolov
, “
Three-dimensional numerical simulation of the characteristics of a ramjet power plant with a continuous-detonation combustor in supersonic flight
,”
Russ. J. Phys. Chem. B
10
,
469
482
(
2016
).
15.
S. M.
Frolov
,
V. I.
Zvegintsev
,
V. S.
Ivanov
,
V. S.
Aksenov
,
I. O.
Shamshin
,
D. A.
Vnuchkov
,
D. G.
Nalivaichenko
,
A. A.
Berlin
, and
V. M.
Fomin
, “
Wind tunnel tests of a hydrogen-fueled detonation ramjet model at approach air stream Mach numbers from 4 to 8
,”
Int. J. Hydrogen Energy
42
,
25401
25413
(
2017
).
16.
S.
Frolov
,
V.
Zvegintsev
,
V.
Ivanov
,
V.
Aksenov
,
I.
Shamshin
,
D.
Vnuchkov
,
D.
Nalivaichenko
,
A.
Berlin
,
V.
Fomin
,
A.
Shiplyuk
 et al, “
Hydrogen-fueled detonation ramjet model: Wind tunnel tests at approach air stream Mach number 5.7 and stagnation temperature 1500 K
,”
Int. J. Hydrogen Energy
43
,
7515
7524
(
2018
).
17.
V.
Ivanov
,
S.
Frolov
,
A.
Zangiev
,
V.
Zvegintsev
, and
I.
Shamshin
, “
Hydrogen fueled detonation ramjet: Conceptual design and test fires at Mach 1.5 and 2.0
,”
Aerosp. Sci. Technol.
109
,
106459
(
2021
).
18.
K.
Wu
,
S.
Zhang
,
M.
Luan
, and
J.
Wang
, “
Effects of flow-field structures on the stability of rotating detonation ramjet engine
,”
Acta Astronaut.
168
,
174
181
(
2020
).
19.
K.
Goto
,
K.
Ota
,
A.
Kawasaki
,
N.
Itouyama
,
H.
Watanabe
,
K.
Matsuoka
,
J.
Kasahara
,
A.
Matsuo
,
I.
Funaki
, and
H.
Kawashima
, “
Cylindrical rotating detonation engine with propellant injection cooling
,”
J. Propul. Power
(published online
2021
).
20.
J.
Sun
,
J.
Zhou
,
S.
Liu
,
Z.
Lin
, and
W.
Lin
, “
Effects of air injection throat width on a non-premixed rotating detonation engine
,”
Acta Astronaut.
159
,
189
198
(
2019
).
21.
M. L.
Fotia
,
F.
Schauer
,
T.
Kaemming
, and
J.
Hoke
, “
Experimental study of the performance of a rotating detonation engine with nozzle
,”
J. Propul. Power
32
,
674
681
(
2016
).
22.
Y.
Zhu
,
K.
Wang
,
Z.
Wang
,
M.
Zhao
,
Z.
Jiao
,
Y.
Wang
, and
W.
Fan
, “
Study on the performance of a rotating detonation chamber with different aerospike nozzles
,”
Aerosp. Sci. Technol.
107
,
106338
(
2020
).
23.
S.-J.
Zhang
,
J. Z.
Ma
, and
J.
Wang
, “
Theoretical and numerical investigation on total pressure gain in rotating detonation engine
,”
AIAA J.
58
,
4866
4877
(
2020
).
24.
E.
Bach
,
C. O.
Paschereit
,
P.
Stathopoulos
, and
M. D.
Bohon
, “
An empirical model for stagnation pressure gain in rotating detonation combustors
,”
Proc. Combust. Inst.
38
,
3807
3814
(
2021
).
25.
E.
Bach
,
P.
Stathopoulos
,
C. O.
Paschereit
, and
M. D.
Bohon
, “
Performance analysis of a rotating detonation combustor based on stagnation pressure measurements
,”
Combust. Flame
217
,
21
36
(
2020
).
26.
W.
Chen
,
J.
Liang
,
X.
Cai
, and
Y.
Mahmoudi
, “
Three-dimensional simulations of detonation propagation in circular tubes: Effects of jet initiation and wall reflection
,”
Phys. Fluids
32
,
046104
(
2020
).
27.
G.
Xiang
,
X.
Gao
,
W.
Tang
,
X.
Jie
, and
X.
Huang
, “
Numerical study on transition structures of oblique detonations with expansion wave from finite-length cowl
,”
Phys. Fluids
32
,
056108
(
2020
).
28.
S.
Zhang
,
S.
Yao
,
M.
Luan
,
L.
Zhang
, and
J.
Wang
, “
Effects of injection conditions on the stability of rotating detonation waves
,”
Shock Waves
28
,
1079
1087
(
2018
).
29.
K.
Wang
,
H.
Teng
,
P.
Yang
, and
H. D.
Ng
, “
Numerical investigation of flow structures resulting from the interaction between an oblique detonation wave and an upper expansion corner
,”
J. Fluid Mech.
903
,
A28
(
2020
).
30.
P.
Zhang
,
P. A.
Meagher
, and
X.
Zhao
, “
Multiplicity for idealized rotational detonation waves
,”
Phys. Fluids
33
,
106102
(
2021
).
31.
P.
Bruce
and
H.
Babinsky
, “
Unsteady shock wave dynamics
,”
J. Fluid Mech.
603
,
463
473
(
2008
).
32.
E. S.
Oran
,
J. W.
Weber
, Jr.
,
E. I.
Stefaniw
,
M. H.
Lefebvre
, and
J. D.
Anderson
, Jr.
, “
A numerical study of a two-dimensional H2-O2-Ar detonation using a detailed chemical reaction model
,”
Combust. Flame
113
,
147
163
(
1998
).
33.
S.
Prakash
,
V.
Raman
,
C. F.
Lietz
,
W. A.
Hargus
, Jr.
, and
S. A.
Schumaker
, “
Numerical simulation of a methane-oxygen rotating detonation rocket engine
,”
Proc. Combust. Inst.
38
,
3777
3786
(
2021
).
34.
Y.
Mahmoudi
,
K.
Mazaheri
, and
S.
Parvar
, “
Hydrodynamic instabilities and transverse waves in propagation mechanism of gaseous detonations
,”
Acta Astronaut.
91
,
263
282
(
2013
).
35.
H.
Shimizu
,
A.
Hayashi
, and
N.
Tsuboi
, “
Study of detailed chemical reaction model of hydrogen-air detonation
,” AIAA Paper No. 2001-0478,
2001
.
36.
D. S.
Balsara
and
C.-W.
Shu
, “
Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy
,”
J. Comput. Phys.
160
,
405
452
(
2000
).
37.
A.
Dubrovskii
,
V.
Ivanov
, and
S.
Frolov
, “
Three-dimensional numerical simulation of the operation process in a continuous detonation combustor with separate feeding of hydrogen and air
,”
Russ. J. Phys. Chem. B
9
,
104
119
(
2015
).
38.
J.
Fujii
,
Y.
Kumazawa
,
A.
Matsuo
,
S.
Nakagami
,
K.
Matsuoka
, and
J.
Kasahara
, “
Numerical investigation on detonation velocity in rotating detonation engine chamber
,”
Proc. Combust. Inst.
36
,
2665
2672
(
2017
).
39.
Y.
Wang
and
J.
Le
, “
A hollow combustor that intensifies rotating detonation
,”
Aerosp. Sci. Technol.
85
,
113
124
(
2019
).
40.
Q.
Xiao
and
C.
Weng
, “
Effect of losses on hydrogen–oxygen–argon detonation cell sizes
,”
Phys. Fluids
33
,
116103
(
2021
).
41.
N.
Smirnov
,
V.
Betelin
,
V.
Nikitin
,
L.
Stamov
, and
D.
Altoukhov
, “
Accumulation of errors in numerical simulations of chemically reacting gas dynamics
,”
Acta Astronaut.
117
,
338
355
(
2015
).
42.
C.
Nordeen
,
D.
Schwer
,
F.
Schauer
,
J.
Hoke
,
T.
Barber
, and
B.
Cetegen
, “
Role of inlet reactant mixedness on the thermodynamic performance of a rotating detonation engine
,”
Shock Waves
26
,
417
428
(
2016
).
43.
S.
Zhou
,
H.
Ma
,
Y.
Ma
,
C.
Zhou
, and
N.
Hu
, “
Experimental investigation on detonation wave propagation mode in the start-up process of rotating detonation turbine engine
,”
Aerosp. Sci. Technol.
111
,
106559
(
2021
).
44.
R.
Zhou
and
J.-P.
Wang
, “
Numerical investigation of shock wave reflections near the head ends of rotating detonation engines
,”
Shock Waves
23
,
461
472
(
2013
).
45.
H.-Y.
Peng
,
W.-D.
Liu
,
S.-J.
Liu
,
H.-L.
Zhang
, and
L.-X.
Jiang
, “
Flowfield analysis and reconstruction of ethylene–air continuous rotating detonation wave
,”
AIAA J.
58
,
5036
5045
(
2020
).
46.
M.
Zhao
,
J.-M.
Li
,
C. J.
Teo
,
B. C.
Khoo
, and
H.
Zhang
, “
Effects of variable total pressures on instability and extinction of rotating detonation combustion
,”
Flow, Turbul. Combust.
104
,
261
290
(
2020
).
47.
X.-Y.
Liu
,
M.-Y.
Luan
,
Y.-L.
Chen
, and
J.-P.
Wang
, “
Flow-field analysis and pressure gain estimation of a rotating detonation engine with banded distribution of reactants
,”
Int. J. Hydrogen Energy
45
,
19976
19988
(
2020
).
48.
F.
Chacon
,
A.
Feleo
, and
M.
Gamba
, “
Secondary waves dynamics and their impact on detonation structure in rotating detonation combustors
,”
Shock Waves
(published online
2021
).
49.
R.
Zhou
and
J.-P.
Wang
, “
Numerical investigation of flow particle paths and thermodynamic performance of continuously rotating detonation engines
,”
Combust. Flame
159
,
3632
3645
(
2012
).
50.
S.
Yao
,
X.
Tang
,
M.
Luan
, and
J.
Wang
, “
Numerical study of hollow rotating detonation engine with different fuel injection area ratios
,”
Proc. Combust. Inst.
36
,
2649
2655
(
2017
).
51.
N.
Jourdaine
,
N.
Tsuboi
,
K.
Ozawa
,
T.
Kojima
, and
A. K.
Hayashi
, “
Three-dimensional numerical thrust performance analysis of hydrogen fuel mixture rotating detonation engine with aerospike nozzle
,”
Proc. Combust. Inst.
37
,
3443
3451
(
2019
).
You do not currently have access to this content.