We study the three-dimensional turbulent Kolmogorov flow, i.e., the Navier–Stokes equations forced by a single-low-wave-number sinusoidal force in a periodic domain, by means of direct numerical simulations. This classical model system is a realization of anisotropic and non-homogeneous hydrodynamic turbulence. Boussinesq's eddy viscosity linear relation is checked and found to be approximately valid over half of the system volume. A more general quadratic Reynolds stress development is proposed, and its parameters are estimated at varying the Taylor scale-based Reynolds number in the flow up to the value 200. The case of a forcing with a different shape, here chosen Gaussian, is considered, and the differences with the sinusoidal forcing are emphasized.

1.
L. D.
Meshalkin
and
I. G.
Sinai
, “
Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous liquid
,”
J. Appl. Math. Mech.
25
,
1700
1705
(
1961
).
2.
J. S. A.
Green
, “
Two-dimensional turbulence near the viscous limit
,”
J. Fluid Mech.
62
,
273
287
(
1974
).
3.
N. F.
Bondarenko
,
M. Z.
Gak
, and
F. V.
Dolzhanskii
, “
Laboratory and theoretical models of plane periodic flow
,”
Izv. Akad. Nauk SSSR, fiz. Atmos. Okeana
15
,
1017
1026
(
1979
).
4.
A. M.
Obukhov
, “
Kolmogorov flow and laboratory simulation of it
,”
Russ. Math. Surv.
38
,
113
126
(
1983
).
5.
V. I.
Kliatskin
, “
On the nonlinear theory of stability of periodic flows
,”
J. Appl. Math. Mech.
36
,
243
250
(
1972
).
6.
V.
Borue
and
S. A.
Orszag
, “
Numerical study of three-dimensional Kolmogorov flow at high Reynolds numbers
,”
J. Fluid Mech.
306
,
293
323
(
1996
).
7.
J. V.
Shebalin
and
S. L.
Woodruff
, “
Kolmogorov flow in three dimensions
,”
Phys. Fluids
9
,
164
170
(
1997
).
8.
L.
Biferale
and
F.
Toschi
, “
Anisotropic homogeneous turbulence: Hierarchy and intermittency of scaling exponents in the anisotropic sectors
,”
Phys. Rev. Lett.
86
,
4831
(
2001
).
9.
N. J.
Balmforth
and
Y.-N.
Young
, “
Stratified Kolmogorov flow
,”
J. Fluid Mech.
450
,
131
(
2002
).
10.
G.
Boffetta
,
A.
Celani
,
A.
Mazzino
,
A.
Puliafito
, and
M.
Vergassola
, “
The viscoelastic Kolmogorov flow: Eddy viscosity and linear stability
,”
J. Fluid Mech.
523
,
161
(
2005
).
11.
S.
Musacchio
and
G.
Boffetta
, “
Turbulent channel without boundaries: The periodic Kolmogorov flow
,”
Phys. Rev. E
89
,
023004
(
2014
).
12.
B.
Rollin
,
Y.
Dubief
, and
C. R.
Doering
, “
Variations on Kolmogorov flow: Turbulent energy dissipation and mean flow profiles
,”
J. Fluid Mech.
670
,
204
(
2011
).
13.
M.
Skote
and
D.
Henningson
, “
Direct numerical simulation of a separated turbulent boundary layer
,”
J. Fluid Mech.
471
,
107
136
(
2002
).
14.
Z. S.
She
, “
Metastability and vortex pairing in the Kolmogorov flow
,”
Phys. Lett. A
124
,
161
164
(
1987
).
15.
S.
Berti
and
G.
Boffetta
, “
Elastic waves and transition to elastic turbulence in a two-dimensional viscoelastic Kolmogorov flow
,”
Phys. Rev. E
82
,
036314
(
2010
).
16.
G.
Chandler
and
R.
Kerswell
, “
Invariant recurrent solutions embedded in a turbulent two-dimensional Kolmogorov flow
,”
J. Fluid Mech.
722
,
554
595
(
2013
).
17.
D.
Lucas
and
R. R.
Kerswell
, “
Spatiotemporal dynamics in two-dimensional Kolmogorov flow over large domains
,”
J. Fluid Mech.
750
,
518
554
(
2014
).
18.
D.
Lucas
and
R. R.
Kerswell
, “
Recurrent flow analysis in spatiotemporally chaotic 2-dimensional Kolmogorov flow
,”
Phys. Fluids
27
,
045106
(
2015
).
19.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
2000
).
20.
F. G.
Schmitt
, “
About Boussinesq's turbulent viscosity hypothesis: Historical remarks and a direct evaluation of its validity
,”
C. R. Méc.
335
,
617
627
(
2007
).
21.
F. G.
Schmitt
, “
Direct test of a nonlinear constitutive equation for simple turbulent shear flows using DNS data
,”
Commun. Nonlinear Sci. Numer. Simul.
12
,
1251
1264
(
2007
).
22.
T. Y.
Hou
and
R.
Li
, “
Computing nearly singular solutions using pseudo-spectral methods
,”
J. Comput. Phys.
226
,
379
397
(
2007
).
23.
T.
Sengupta
,
P.
Sundaram
, and
A.
Sengupta
, “
Analysis of pseudo-spectral methods used for numerical simulation of turbulence
,” arXiv preprint arXiv:2109.00255 (
2021
).
24.
I. E.
Sarris
,
H.
Jeanmart
,
D.
Carati
, and
G.
Winckelmans
, “
Box-size dependence and breaking of translational invariance in the velocity statistics computed from three-dimensional turbulent Kolmogorov flows
,”
Phys. Fluids
19
,
095101
(
2007
).
25.
P.
Bernard
and
J.
Wallace
,
Turbulent Flow: Analysis, Measurement, and Prediction
(
John Wiley & Sons
,
2002
).
26.
J.
Boussinesq
,
Essai Sur la Théorie Des Eaux Courantes
(
Mémoires présentés par divers savants à l'Académie des Sciences, Imprimerie Nationale
,
1877
), Vol.
XXIII
.
27.
C. G.
Speziale
, “
On nonlinear kl and k-ε models of turbulence
,”
J. Fluid Mech.
178
,
459
475
(
1987
).
28.
S.
Nisizima
and
A.
Yoshizawa
, “
Turbulent channel and Couette flows using an anisotropic k-epsilon model
,”
AIAA J.
25
,
414
420
(
1987
).
29.
F. G.
Schmitt
and
C.
Hirsch
, “
Experimental study of the constitutive equation for an axisymmetric complex turbulent flow
,”
ZAMM/Z. Angew. Mathematik und Mechanik
80
,
815
825
(
2000
).
30.
S. B.
Pope
, “
A more general effective-viscosity hypothesis
,”
J. Fluid Mech.
72
,
331
340
(
1975
).
31.
T.
Jongen
and
T. B.
Gatski
, “
General explicit algebraic stress relations and best approximation for three-dimensional flows
,”
Int. J. Eng. Sci.
36
,
739
763
(
1998
).
32.
D.
Modesti
, “
A priori tests of eddy viscosity models in square duct flow
,”
Theor. Comput. Fluid Dyn.
34
,
713
734
(
2020
).
33.
P.
Wellinger
,
P.
Uhl
,
B.
Weigand
, and
J.
Rodriguez
, “
Analysis of turbulence structures and the validity of the linear Boussinesq hypothesis for an infinite tube bundle
,”
Int. J. Heat Fluid Flow
91
,
108779
(
2021
).
34.
A. J. M.
Spencer
, “
Theory of invariants
,” in
Continuum Physics
, edited by
A. C.
Eringen
(
Academic Press
,
New York
,
1971
), Vol.
1
, pp.
239
353
.
35.
T.
Gatski
and
C.
Speziale
, “
On explicit algebraic stress models for complex turbulent flows
,”
J. Fluid Mech.
254
,
59
78
(
1993
).
36.
X.-H.
Xu
and
C.
Speziale
, “
Explicit algebraic stress model of turbulence with anisotropic dissipation
,”
AIAA J.
34
,
2186
2189
(
1996
).
37.
S. S.
Girimaji
, “
Fully explicit and self-consistent algebraic Reynolds stress model
,”
Theor. Comput. Fluid Dyn.
8
,
387
402
(
1996
).
38.
S.
Wallin
and
A. V.
Johansson
, “
An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows
,”
J. Fluid Mech.
403
,
89
132
(
2000
).
39.
T.
Gatski
and
C.
Rumsey
,
Closure Strategies for Turbulent and Transitional Flows
(
Cambridge University Press
,
2002
), pp.
9
46
.
40.
F.
Romanò
, “
Stability of generalized Kolmogorov flow in a channel
,”
Phys. Fluids
33
,
024106
(
2021
).
41.
H.
Tennekes
and
J.
Lumley
,
A First Course in Turbulence
(
MIT Press
,
1972
).
42.
S.
Corrsin
, “
Limitations of gradient transport models in random walks and in turbulence
,”
Adv. Geophys.
18
,
25
60
(
1975
).
43.
J.
Hinze
,
R.
Sonnenberg
, and
P.
Builtjes
, “
Memory effect in a turbulent boundary-layer flow due to a relatively strong axial variation of the mean-velocity gradient
,”
Appl. Sci. Res.
29
,
1
13
(
1974
).
44.
F.
Hamba
, “
Nonlocal analysis of the Reynolds stress in turbulent shear flow
,”
Phys. Fluids
17
,
115102
(
2005
).
45.
P.
Egolf
and
K.
Hutter
,
Nonlinear, Nonlocal and Fractional Turbulence
(
Springer
,
2020
).
46.
W. T.
Bos
, “
Production and dissipation of kinetic energy in grid turbulence
,”
Phys. Rev. Fluids
5
,
104607
(
2020
).
You do not currently have access to this content.