We apply the gene-expression programing (GEP) method to develop subgrid-scale models for large-eddy simulations (LESs) of turbulence. The GEP model is trained based on Galilean invariants and tensor basis functions, and the training data are from direct numerical simulation (DNS) of incompressible isotropic turbulence. The model trained with GEP has been explicitly tested, showing that the GEP model can not only provide high correlation coefficients in a priori tests but also show great agreement with filtered DNS data when applied to LES. Compared to commonly used models like the dynamic Smagorinsky model and the dynamic mixed model, the GEP model provides significantly improved results on turbulence statistics and flow structures. Based on an analysis of the explicitly given model equation, the enhanced predictions are related to the fact that the GEP model is less dissipative and that it introduces high-order terms closely related to vorticity distribution. Furthermore, the GEP model with the explicit equation is straightforward to be applied in LESs, and its additional computational cost is substantially smaller than that of models trained with artificial neural networks with similar levels of predictive accuracies in a posteriori tests.

1.
J.
Smagorinsky
, “
General circulation experiments with the primitive equations: I. the basic experiment
,”
Mon. Weather Rev.
91
,
99
164
(
1963
).
2.
D. K.
Lilly
, “
The representation of small-scale turbulence in numerical simulation experiments
,” in Proceedings of the IBM Scientific Computing Symposium on Environmental Sciences (IBM, 1967), p.
195
210
.
3.
S. B.
Pope
, “
Turbulent Flows
,” (
Cambridge University Press
,
2000
).
4.
P.
Sagaut
,
Large Eddy Simulation for Incompressible Flows: An Introduction
(
Springer Science & Business Media
,
2006
).
5.
P.
Moin
,
K.
Squires
,
W.
Cabot
, and
S.
Lee
, “
A dynamic subgrid-scale model for compressible turbulence and scalar transport
,”
Phys. Fluids
3
,
2746
2757
(
1991
).
6.
J.
Bardina
,
J. H.
Ferziger
, and
W. C.
Reynolds
, “
Improved subgrid scale models for large eddy simulation
,”
AIAA
80
,
1357
(
1980
).
7.
S.
Liu
,
C.
Meneveau
, and
J.
Katz
, “
On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet
,”
J. Fluid Mech.
275
,
83
119
(
1994
).
8.
R. A.
Clark
,
J. H.
Ferziger
, and
W. C.
Reynolds
, “
Evaluation of subgrid-scale models using an accurately simulated turbulent flow
,”
J. Fluid Mech.
91
,
1
16
(
1979
).
9.
B.
Vreman
,
B.
Geurts
, and
H.
Kuerten
, “
Large-eddy simulation of the turbulent mixing layer
,”
J. Fluid Mech.
339
,
357
390
(
1997
).
10.
C.
Fureby
,
G.
Tabor
,
H. G.
Weller
, and
A. D.
Gosman
, “
A comparative study of subgrid scale models in homogeneous isotropic turbulence
,”
Phys. Fluids
9
,
1416
1429
(
1997
).
11.
M.
Gamahara
and
Y.
Hattori
, “
Searching for turbulence models by artificial neural network
,”
Phys. Rev. Fluids
2
,
54604
(
2017
).
12.
S.
Pope
, “
A more general effective-viscosity hypothesis
,”
J. Fluid Mech.
72
,
331
340
(
1975
).
13.
V. C.
Wong
, “
A proposed statistical-dynamic closure method for the linear or nonlinear subgrid-scale stresses
,”
Phys. Fluids
4
,
1080
1082
(
1992
).
14.
T. S.
Lund
and
E. A.
Novikov
, “
Parameterization of subgrid-scale stress by the velocity gradient tensor
,” in
Center for Turbulence Research Annual Research Briefs
(
Stanford University
,
1993
), pp.
27
43
.
15.
C.
Meneveau
,
T. S.
Lund
, and
P.
Moin
, “
Search for subgrid scale parameterization by projection pursuit regression
,” in
Studying Turbulence Using Numerical Simulation Databases. 4: Proceedings of the 1992 Summer Program
(
Stanford University
,
1992
), pp.
61
81
.
16.
K.
Duraisamy
, “
Perspectives on machine learning-augmented reynolds-averaged and large eddy simulation models of turbulence
,”
Phys. Rev. Fluids
6
,
050504
(
2021
).
17.
F.
Sarghini
,
G.
De Felice
, and
S.
Santini
, “
Neural networks based subgrid scale modeling in large eddy simulations
,”
Comput. Fluids
32
,
97
108
(
2003
).
18.
Z.
Wang
,
K.
Luo
,
D.
Li
,
J.
Tan
, and
J.
Fan
, “
Investigations of data-driven closure for subgrid-scale stress in large-eddy simulation
,”
Phys. Fluids
30
,
125101
(
2018
).
19.
Z.
Zhou
,
G.
He
,
S.
Wang
, and
G.
Jin
, “
Subgrid-scale model for large-eddy simulation of isotropic turbulent flows using an artificial neural network
,”
Comput. Fluids
195
,
104319
(
2019
).
20.
A.
Beck
,
D.
Flad
, and
C.-D.
Munz
, “
Deep neural networks for data-driven LES closure models
,”
J. Comput. Phys.
398
,
108910
(
2019
).
21.
C.
Xie
,
K.
Li
,
C.
Ma
, and
J.
Wang
, “
Modeling subgrid-scale force and divergence of heat flux of compressible isotropic turbulence by artificial neural network
,”
Phys. Rev. Fluids
4
,
104605
(
2019
).
22.
C.
Xie
,
J.
Wang
, and
E.
Weinan
, “
Modeling subgrid-scale forces by spatial artificial neural networks in large eddy simulation of turbulence
,”
Phys. Rev. Fluids
5
,
054606
(
2020
).
23.
C.
Xie
,
Z.
Yuan
, and
J.
Wang
, “
Artificial neural network-based nonlinear algebraic models for large eddy simulation of turbulence
,”
Phys. Fluids
32
,
115101
(
2020
).
24.
J.
Park
and
H.
Choi
, “
Toward neural-network-based large eddy simulation: Application to turbulent channel flow
,”
J. Fluid Mech.
914
,
1
23
(
2021
).
25.
Z.
Yuan
,
Y.
Wang
,
C.
Xie
, and
J.
Wang
, “
Dynamic iterative approximate deconvolution models for large eddy simulation of turbulence
,”
Phys. Fluids
33
,
085125
(
2021
).
26.
Z.
Yuan
,
C.
Xie
, and
J.
Wang
, “
Deconvolutional artificial neural network models for large eddy simulation of turbulence
,”
Phys. Fluids
32
,
115106
(
2020
).
27.
A.
Subel
,
A.
Chattopadhyay
,
Y.
Guan
, and
P.
Hassanzadeh
, “
Data-driven subgrid-scale modeling of forced burgers turbulence using deep learning with generalization to higher reynolds numbers via transfer learning
,”
Phys. Fluids
33
,
031702
(
2021
).
28.
C.
Ferreira
, “
Gene expression programming: A new adaptive algorithm for solving problems
,”
Complex Syst.
13
,
87–129
(
2001
).
29.
J.
Weatheritt
and
R.
Sandberg
, “
A novel evolutionary algorithm applied to algebraic modifications of the rans stress–strain relationship
,”
J. Comput. Phys.
325
,
22
37
(
2016
).
30.
J.
Weatheritt
and
R.
Sandberg
, “
The development of algebraic stress models using a novel evolutionary algorithm
,”
Int. J. Heat Fluid Flow
68
,
298
318
(
2017
).
31.
J.
Weatheritt
,
R.
Pichler
,
R. D.
Sandberg
,
G.
Laskowski
, and
V.
Michelassi
, “
Machine learning for turbulence model development using a high-fidelity HPT cascade simulation
,” in
Turbomachinery Technical Conference and Exposition
(
2017
).
32.
H. D.
Akolekar
,
J.
Weatheritt
,
N.
Hutchins
,
R. D.
Sandberg
,
G.
Laskowski
, and
V.
Michelassi
, “
Development and use of machine-learnt algebraic Reynolds stress models for enhanced prediction of wake mixing in LPTs
,”
J. Turbomach.
141
,
041010
(
2019
).
33.
Y.
Zhao
,
H. D.
Akolekar
,
J.
Weatheritt
,
V.
Michelassi
, and
R. D.
Sandberg
, “
RANS turbulence model development using CFD-driven machine learning
,”
J. Comput. Phys.
411
,
109413
(
2020
).
34.
M.
Reissmann
,
J.
Hasslberger
,
R. D.
Sandberg
, and
M.
Klein
, “
Application of gene expression programming to a-posteriori LES modeling of a Taylor Green vortex
,”
J. Comput. Phys.
424
,
109859
(
2021
).
35.
M.
Buzzicotti
,
M.
Linkmann
,
H.
Aluie
,
L.
Biferale
,
J.
Brasseur
, and
C.
Meneveau
, “
Effect of filter type on the statistics of energy transfer between resolved and subfilter scales from a-priori analysis of direct numerical simulations of isotropic turbulence
,”
J. Turbul.
19
,
167
197
(
2018
).
36.
C.
Meneveau
and
J.
Katz
, “
Scale-invariance and turbulence models for large-eddy simulation
,”
Annu. Rev. Fluid Mech.
32
,
1
32
(
2000
).
37.
T.
Ishihara
,
T.
Gotoh
, and
Y.
Kaneda
, “
Study of high-Reynolds number isotropic turbulence by direct numerical simulation
,”
Annu. Rev. Fluid Mech.
41
,
165
180
(
2009
).
38.
J.
Wang
,
L.-P.
Wang
,
Z.
Xiao
,
Y.
Shi
, and
S.
Chen
, “
A hybrid numerical simulation of isotropic compressible turbulence
,”
J. Comput. Phys.
229
,
5257
5279
(
2010
).
39.
G. S.
Patterson
and
S. A.
Orszag
, “
Spectral calculations of isotropic turbulence: Efficient removal of aliasing interactions
,”
Phys. Fluids
14
,
2538
2541
(
1971
).
40.
S. A.
Orszag
, “
Numerical methods for the simulation of turbulence
,”
Phys. Fluids
12
,
II-250
(
1969
).
41.
M.
Schoepplein
,
J.
Weatheritt
,
R.
Sandberg
,
M.
Talei
, and
M.
Klein
, “
Application of an evolutionary algorithm to LES modelling of turbulent transport in premixed flames
,”
J. Comput. Phys.
374
,
1166
1179
(
2018
).
42.
J.
Weatheritt
, “
The development of data driven approaches to further turbulence closures
,” Ph.D. thesis (
University of Southampton
,
2015
).
43.
A.
Leonard
, “
Energy Cascade in large-eddy simulations of turbulent fluid flows
,” in
Advances in Geophysics
(
Elsevier
,
1975
), Vol.
18
, pp.
237
248
.
44.
S.
Ghosal
, “
An analysis of numerical errors in large-eddy simulations of turbulence
,”
J. Comput. Phys.
125
,
187
206
(
1996
).
45.
J.
Meyers
,
B. J.
Geurts
, and
M.
Baelmans
, “
Database analysis of errors in large-eddy simulation
,”
Phys. Fluids
15
,
2740
2755
(
2003
).
46.
U.
Piomelli
,
A.
Rouhi
, and
B. J.
Geurts
, “
A grid-independent length scale for large-eddy simulations
,”
J. Fluid Mech.
766
,
499
(
2015
).
47.
R. D.
Moser
,
S. W.
Haering
, and
G. R.
Yalla
, “
Statistical properties of subgrid-scale turbulence models
,”
Annu. Rev. Fluid Mech.
53
,
255
286
(
2021
).
48.
J. C. R.
Hunt
,
A. A.
Wray
, and
P.
Moin
, “
Eddies, stream, and convergence zones in turbulent flows
,”
Technical Report No. CTR-S88
(
Center for Turbulent Research
,
1988
).
You do not currently have access to this content.