Dispersions of colloidal platelets in the nematic phase display strong wall anchoring, which competes with the reorientational motion of the director when the system is subjected to flow. We show that the mechanical response to large amplitude oscillatory strain and stress depends on the confinement of the system due to this competition. We elucidate the underlying structural response by deflecting a x-ray beam vertically along the vorticity direction of a Couette geometry, such that the structure can be probed throughout the gap with an unprecedented spatial resolution while recording in situ the mechanical response. We observe strong inhomogeneities in terms of the orientation of the nematic director, depending on the extent of the system's yield during an oscillation. At small strain amplitudes, we observe a small region where the director oscillates between wall anchoring and the Leslie angle, while in the bulk, the director tilts out of the flow–flow gradient plane. At large strain amplitudes, the oscillations of the director are symmetric, close to the wall, and propagate into the bulk. Here, a twinning is observed where the director rotates out-of-plane in two opposite directions. Using the sequence of physical process method to analyze the LAOStrain response for both the mechanical and structural response, we locate the yielding in a small time-window around flow reversal and identify that the bulk is the main contributor to the mechanical response. The structural response to LAOStress is much less pronounced even when the stress amplitude causes significant shear thinning.

1.
F. M.
van der Kooij
,
A. P.
Philipse
, and
J. K. G.
Dhont
, “
Sedimentation and diffusion in suspensions of sterically stabilized colloidal platelets
,”
Langmuir
16
,
5317
5323
(
2000
).
2.
J. A. C.
Veerman
and
D.
Frenkel
, “
Phase behavior of disklike hard-core mesogens
,”
Phys. Rev. A
45
,
5632
5648
(
1992
).
3.
F.
Leslie
, “
Some constitutive equations for liquid crystals
,”
Arch. Rational Mech. Anal.
28
,
265
283
(
1968
).
4.
T.
Carlsson
, “
The possibility of the existence of a positive leslie viscosity α2. Proposed flow behavior of disk like nematic liquid crystals
,”
Mol. Cryst. Liquid Cryst.
89
,
57
66
(
1982
).
5.
T.
Yamamoto
,
T.
Suga
, and
N.
Mori
, “
Brownian dynamics simulation of orientational behavior, flow-induced structure, and rheological properties of a suspension of oblate spheroid particles under simple shear
,”
Phys. Rev. E
72
,
021509
(
2005
).
6.
A. P.
Singh
and
A. D.
Rey
, “
Effect of long-range elasticity and boundary conditions on microstructural response of sheared discotic mesophases
,”
J. Non-Newtonian Fluid Mech.
94
,
87
111
(
2000
).
7.
D.
Grecov
and
A. D.
Rey
, “
Theoretical and computational rheology for discotic nematic liquid crystals
,”
Mol. Cryst. Liquid Cryst.
391
,
57
94
(
2003
).
8.
D.
Grecov
and
A. D.
Rey
, “
Transient rheology of discotic mesophases
,”
Rheol. Acta
42
,
590
604
(
2003
).
9.
M.
Moan
,
T.
Aubry
, and
F.
Bossard
, “
Nonlinear behavior of very concentrated suspensions of plate-like kaolin particles in shear flow
,”
J. Rheol.
47
,
1493
(
2003
).
10.
I.
Arief
and
P.
Mukhopadhyay
, “
Two-step yielding in novel CoNi nanoplatelet-based magnetic fluids under oscillatory rheology
,”
Mater. Lett.
167
,
192
196
(
2016
).
11.
F.
Bossard
,
M.
Moan
, and
T.
Aubry
, “
Linear and nonlinear viscoelastic behavior of very concentrated plate-like kaolin suspensions
,”
J. Rheol.
51
,
1253
(
2007
).
12.
S.
Jogun
and
C. F.
Zukoski
, “
Rheology of dense suspensions of platelike particles
,”
J. Rheol.
40
,
1211
1232
(
1996
).
13.
H. J. M.
Hanley
,
G. C.
Straty
, and
F.
Tsvetkov
, “
A small angle neutron scattering study of a clay suspension under shear
,”
Langmuir
10
,
3362
3364
(
1994
).
14.
B.
Hammouda
,
J.
Mang
, and
S.
Kumar
, “
Shear-induced orientational effects in discotic-liquid-crystal micelles
,”
Phys. Rev. E
51
,
6282
6285
(
1995
).
15.
A. B. D.
Brown
and
A. R.
Rennie
, “
Monodisperse colloidal plates under shear
,”
Phys. Rev. E
62
,
851
862
(
2000
).
16.
S. M.
Jogun
and
C. F.
Zukoski
, “
Rheology and microstructure of dense suspensions of plate-shaped colloidal particles
,”
J. Rheol.
43
,
847
871
(
1999
).
17.
L. M.
Dykes
,
J. M.
Torkelson
,
W. R.
Burghardt
, and
R.
Krishnamoorti
, “
Shear-induced orientation in polymer/clay dispersions via in situ x-ray scattering
,”
Polymer
51
,
4916
4927
(
2010
).
18.
A. M.
Philippe
,
C.
Baravian
,
M.
Jenny
,
F.
Meneau
, and
L. J.
Michot
, “
Taylor-Couette instability in anisotropic clay suspensions measured using small-angle x-ray scattering
,”
Phys. Rev. Lett.
108
,
254501
(
2012
).
19.
M. P.
Lettinga
,
P.
Holmqvist
,
P.
Ballesta
,
S.
Rogers
,
D.
Kleshchanok
, and
B.
Struth
, “
Nonlinear behavior of nematic platelet dispersions in shear flow
,”
Phys. Rev. Lett.
109
,
246001
(
2012
).
20.
O.
Korculanin
,
D.
Hermida-Merino
,
H.
Hirsemann
,
B.
Struth
,
S. A.
Rogers
, and
M. P.
Lettinga
, “
Anomalous structural response of nematic colloidal platelets subjected to large amplitude stress oscillations
,”
Phys. Fluids
29
,
023102
(
2017
).
21.
M. P.
Lettinga
,
Z.
Dogic
,
H.
Wang
, and
J.
Vermant
, “
flow behavior of colloidal rodlike viruses in the nematic phase
,”
Langmuir
21
,
8048
8057
(
2005
).
22.
A. B. D.
Brown
and
A. R.
Rennie
, “
Images of shear-induced phase separation in a dispersion of hard nanoscale discs
,”
Chem. Eng. Sci.
56
,
2999
3004
(
2001
).
23.
J. K.
Wychowaniec
,
M.
Iliut
,
B.
Borek
,
C.
Muryn
,
O. O.
Mykhaylyk
,
S.
Edmondson
, and
A.
Vijayaraghavan
, “
Elastic flow instabilities and macroscopic textures in graphene oxide lyotropic liquid crystals
,”
npj 2D Mater. Appl.
5
,
11
(
2021
).
24.
L.
Harnau
and
S.
Dietrich
, “
Fluids of platelike particles near a hard wall
,”
Phys. Rev. E
65
,
021505
(
2002
).
25.
E. P.
Choate
,
M. G.
Forest
, and
L.
Ju
, “
Effects of strong anchoring on the dynamic moduli of heterogeneous nematic polymers II: Oblique anchoring angles
,”
Rheol. Acta
49
,
335
347
(
2010
).
26.
E. P.
Choate
and
M. G.
Forest
, “
Dependence of the dynamic moduli of heterogeneous nematic polymers on planar anchoring relative to flow direction
,”
Rheol. Acta
50
,
767
778
(
2011
).
27.
S.
Heidenreich
,
S.
Hess
, and
S. H. L.
Klapp
, “
Shear-induced dynamic polarization and mesoscopic structure in suspensions of polar nanorods
,”
Phys. Rev. Lett.
102
,
028301
(
2009
).
28.
V. M. O.
Batista
,
M. L.
Blow
, and
M. M.
Telo da Gama
, “
The effect of anchoring on the nematic flow in channels
,”
Soft Matter
11
,
4674
4685
(
2015
).
29.
T.
Börzsönyi
,
Á.
Buka
,
A. P.
Krekhov
, and
L.
Kramer
, “
Response of a homeotropic nematic liquid crystal to rectilinear oscillatory shear
,”
Phys. Rev. E
58
,
7419
7427
(
1998
).
30.
C. J.
Holmes
,
S. L.
Cornford
, and
J. R.
Sambles
, “
Small surface pretilt strikingly affects the director profile during Poiseuille flow of a nematic liquid crystal
,”
Phys. Rev. Lett.
104
,
248301
(
2010
).
31.
A.
Sengupta
,
S.
Herminghaus
, and
C.
Bahr
, “
Opto-fluidic velocimetry using liquid crystal microfluidics
,”
Appl. Phys. Lett.
101
,
164101
(
2012
).
32.
A.
Verhoeff
,
R.
Brand
, and
H.
Lekkerkerker
, “
Tuning the birefringence of the nematic phase in suspensions of colloidal gibbsite platelets
,”
Mol. Phys.
109
,
1363
1371
(
2011
).
33.
S.
Barè
,
J. K.
Cockcroft
,
S. L.
Colston
,
A. C.
Jupe
, and
A. R.
Rennie
, “
X-ray study of the orientational order of a concentrated dispersion of kaolinite under flow
,”
J. Appl. Crystallogr.
34
,
573
579
(
2001
).
34.
Y.
Chen
,
O.
Korculanin
,
S.
Narayanan
,
J.
Buitenhuis
,
S. A.
Rogers
,
R. L.
Leheny
, and
M. P.
Lettinga
, “
Probing nonlinear velocity profiles of shear-thinning, nematic platelet dispersions in Couette flow using x-ray photon correlation spectroscopy
,”
Phys. Fluids
33
,
063102
(
2021
).
35.
M. W.
Liberatore
,
F.
Nettesheim
,
P. A.
Vasquez
,
M. E.
Helgeson
,
N. J.
Wagner
,
E. W.
Kaler
,
L. P.
Cook
,
L.
Porcar
, and
Y. T.
Hu
, “
Microstructure and shear rheology of entangled wormlike micelles in solution
,”
J. Rheol.
53
,
441
458
(
2009
).
36.
M. E.
Helgeson
,
M. D.
Reichert
,
Y. T.
Hu
, and
N. J.
Wagner
, “
Relating shear banding, structure, and phase behavior in wormlike micellar solutions
,”
Soft Matter
5
,
3858
(
2009
).
37.
J. C.-W.
Lee
,
L.
Porcar
, and
S. A.
Rogers
, “
Unveiling temporal nonlinear structure–rheology relationships under dynamic shearing
,”
Polymers
11
,
1189
(
2019
).
38.
B.
Struth
,
K.
Hyun
,
E.
Kats
,
T.
Meins
,
M.
Walther
,
M.
Wilhelm
, and
G.
Grübel
, “
Observation of new states of liquid crystal 8CB under nonlinear shear conditions as observed via a novel and unique rheology/small-angle x-ray scattering combination
,”
Langmuir
27
,
2880
2887
(
2011
).
39.
F.
Westermeier
,
D.
Pennicard
,
H.
Hirsemann
,
U. H.
Wagner
,
C.
Rau
,
H.
Graafsma
,
P.
Schall
,
M. P.
Lettinga
, and
B.
Struth
, “
Connecting structure, dynamics and viscosity in sheared soft colloidal liquids: A medley of anisotropic fluctuations
,”
Soft Matter
12
,
171
180
(
2016
).
40.
A. V.
Zozulya
,
S.
Bondarenko
,
A.
Schavkan
,
F.
Westermeier
,
G.
Grübel
, and
M.
Sprung
, “
Microfocusing transfocator for 1D and 2D compound refractive lenses
,”
Opt. Express
20
,
18967
(
2012
).
41.
C.
Rau
,
U.
Wagner
,
Z.
Pešić
, and
A.
De Fanis
, “
Coherent imaging at the Diamond beamline I13
,”
Phys. Status Solidi A
208
,
2522
2525
(
2011
).
42.
C.
Rau
, “
Imaging with coherent synchrotron radiation: X-ray imaging and coherence beamline (I13) at diamond light source
,”
Synchrotron Radiat. News
30
,
19
25
(
2017
).
43.
W.
Bras
,
I.
Dolbnya
,
D.
Detollenaere
,
R.
van Tol
,
M.
Malfois
,
G.
Greaves
,
A.
Ryan
, and
E.
Heeley
, “
Recent experiments on a small-angle/wide-angle x-ray scattering beam line at the ESRF
,”
J. Appl. Crystallogr.
36
,
791
794
(
2003
).
44.
G.
Portale
,
D.
Cavallo
,
G. C.
Alfonso
,
D.
Hermida-Merino
,
M.
van Drongelen
,
L.
Balzano
,
G. W. M.
Peters
,
J. G. P.
Goossens
, and
W.
Bras
, “
Polymer crystallization studies under processing-relevant conditions at the SAXS/WAXS DUBBLE beamline at the ESRF
,”
J. Appl. Crystallogr.
46
,
1681
1689
(
2013
).
45.
D.
Pennicard
,
S.
Lange
,
S.
Smoljanin
,
H.
Hirsemann
,
H.
Graafsma
,
M.
Epple
,
M.
Zuvic
,
M.-O.
Lampert
,
T.
Fritzsch
, and
M.
Rothermund
, “
The LAMBDA photon-counting pixel detector
,”
J. Phys.: Conf. Ser.
425
,
062010
(
2013
).
46.
D.
Pennicard
,
S.
Smoljanin
,
B.
Struth
,
H.
Hirsemann
,
A.
Fauler
,
M.
Fiederle
,
O.
Tolbanov
,
A.
Zarubin
,
A.
Tyazhev
,
G.
Shelkov
, and
H.
Graafsma
, “
The LAMBDA photon-counting pixel detector and high-Z sensor development
,”
J. Instrum.
9
,
C12026
(
2014
).
47.
D.
Kleshchanok
,
J.-M.
Meijer
,
A. V.
Petukhov
,
G.
Portale
, and
H. N. W.
Lekkerkerker
, “
Attractive glass formation in aqueous mixtures of colloidal gibbsite platelets and silica spheres
,”
Soft Matter
7
,
2832
(
2011
).
48.
S. A.
Rogers
, “
A sequence of physical processes determined and quantified in LAOS: An instantaneous local 2D/3D approach
,”
J. Rheol.
56
,
1129
(
2012
).
49.
S. A.
Rogers
, “
In search of physical meaning: Defining transient parameters for nonlinear viscoelasticity
,”
Rheol. Acta
56
,
501
525
(
2017
).
50.
J. D.
Park
and
S. A.
Rogers
, “
The transient behavior of soft glassy materials far from equilibrium
,”
J. Rheol.
62
,
869
888
(
2018
).
51.
J. D.
Park
and
S. A.
Rogers
, “
Rheological manifestation of microstructural change of colloidal gel under oscillatory shear flow
,”
Phys. Fluids
32
,
063102
(
2020
).
52.
J. C.-W.
Lee
,
K. M.
Weigandt
,
E. G.
Kelley
, and
S. A.
Rogers
, “
Structure-property relationships via recovery rheology in viscoelastic materials
,”
Phys. Rev. Lett.
122
,
248003
(
2019
).
53.
G. J.
Donley
,
P. K.
Singh
,
A.
Shetty
, and
S. A.
Rogers
, “
Elucidating the G″ overshoot in soft materials with a yield transition via a time-resolved experimental strain decomposition
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
21945
21952
(
2020
).
54.
J.
Choi
,
F.
Nettesheim
, and
S. A.
Rogers
, “
The unification of disparate rheological measures in oscillatory shearing
,”
Phys. Fluids
31
,
073107
(
2019
).
55.
G. J.
Donley
,
J. R.
de Bruyn
,
G. H.
McKinley
, and
S. A.
Rogers
, “
Time-resolved dynamics of the yielding transition in soft materials
,”
J. Non-Newtonian Fluid Mech.
264
,
117
134
(
2019
).
56.
G. J.
Donley
,
W. W.
Hyde
,
S. A.
Rogers
, and
F.
Nettesheim
, “
Yielding and recovery of conductive pastes for screen printing
,”
Rheol. Acta
58
,
361
382
(
2019
).
57.
B. F. B.
Silva
,
M.
Zepeda-Rosales
,
N.
Venkateswaran
,
B. J.
Fletcher
,
L. G.
Carter
,
T.
Matsui
,
T. M.
Weiss
,
J.
Han
,
Y.
Li
,
U.
Olsson
, and
C. R.
Safinya
, “
Nematic director reorientation at solid and liquid interfaces under flow: SAXS studies in a microfluidic device
,”
Langmuir
31
,
4361
4371
(
2015
).
58.
C. R.
Safinya
,
E. B.
Sirota
,
R. F.
Bruinsma
,
C.
Jeppesen
,
R. J.
Plano
, and
L. J.
Wenzel
, “
Structure of membrane surfactant and liquid crystalline smectic lamellar phases under flow
,”
Science
261
,
588
591
(
1993
).
59.
J.-C. P.
Gabriel
,
F.
Camerel
,
B. J.
Lemaire
,
H.
Desvaux
,
P.
Davidson
, and
P.
Batail
, “
Swollen liquid-crystalline lamellar phase based on extended solid-like sheets
,”
Nature
413
,
504
508
(
2001
).
60.
S. H. L.
Klapp
and
S.
Hess
, “
Shear-stress-controlled dynamics of nematic complex fluids
,”
Phys. Rev. E
81
,
051711
(
2010
).
61.
Y.
Méheust
,
K. D.
Knudsen
, and
J. O.
Fossum
, “
Inferring orientation distributions in anisotropic powders of nano-layered crystallites from a single two-dimensional WAXS image
,”
J. Appl. Crystallogr.
39
,
661
670
(
2006
).
62.
F. D.
Giudice
,
B. V.
Cunning
,
R. S.
Ruoff
, and
A. Q.
Shen
, “
Filling the gap between transient and steady shear rheology of aqueous graphene oxide dispersions
,”
Rheol. Acta
57
,
293
306
(
2018
).
You do not currently have access to this content.