The aerodynamic performance and wake structure of dandelion seed pappus have been numerically studied based on a simplified quasi-dandelion pappus (QDP) model with its filaments represented by rectangular cylinders. The filament width is chosen as the major geometric parameter for investigation. A rigorous measuring strategy is developed for the identification of the recirculation region width in the wake of the QDP model. Three regimes are distinguished as the filament width increases, i.e., a dandelion-like regime, a transition regime, and a disk-like regime. In the dandelion-like regime, the recirculation region widths are relatively large and monotonously decrease with the increase in Reynolds number. In the transition regime, the recirculation region widths are moderate and first decrease sharply at low Reynolds number and subsequently maintain an approximately invariant value. In the disk-like regime, the recirculation region widths are relatively small. The Reynolds number based on the recirculation region width is defined, and its correlation to the drag coefficient in a different regime is also discussed. In addition, as the QDP model turns from the dandelion-like regime to the disk-like regime, the pressure distribution in the wake turns from the recirculation region type to the flow stagnation type. The current study may provide a reference for the design of more efficient dandelion-like aircraft.

1.
H. N.
Ridley
, “
On the dispersal of seeds by wind
,”
Ann. Bot.
19
,
351
363
(
1905
).
2.
J.
Small
, “
The origin and development of the compositae
,”
New Phytol.
17
,
200
230
(
1918
).
3.
L.
Van der Pijl
et al,
Principles of Dispersal in Higher Plants
(
Springer
,
1982
), Vol.
214
.
4.
A.
Azuma
and
K.
Yasuda
, “
Flight performance of rotary seeds
,”
J. Theor. Biol.
138
,
23
53
(
1989
).
5.
A.
Honek
,
Z.
Martinkova
,
P.
Saska
, and
S.
Koprdova
, “
Role of post-dispersal seed and seedling predation in establishment of dandelion (Taraxacum agg.) plants
,”
Agric., Ecosyst. Environ.
134
,
126
135
(
2009
).
6.
J.
Sheldon
and
F.
Burrows
, “
The dispersal effectiveness of the achene–pappus units of selected compositae in steady winds with convection
,”
New Phytol.
72
,
665
675
(
1973
).
7.
D.
Greene
and
E.
Johnson
, “
The aerodynamics of plumed seeds
,”
Funct. Ecol.
4
,
117
125
(
1990
).
8.
S.
Minami
and
A.
Azuma
, “
Various flying modes of wind-dispersal seeds
,”
J. Theor. Biol.
225
,
1
14
(
2003
).
9.
O.
Tackenberg
,
P.
Poschlod
, and
S.
Kahmen
, “
Dandelion seed dispersal: The horizontal wind speed does not matter for long-distance dispersal—It is updraft!
,”
Plant Biol.
5
,
451
454
(
2003
).
10.
S.
Sudo
,
N.
Matsui
,
K.
Sekine
,
M.
Shimizu
,
T.
Yano
, and
S.
Shida
, “
Hydrodynamic function of cilia in living creatures
,”
J. Jpn. Soc. Exp. Mech.
9
,
s145
s150
(
2009
).
11.
Q.
Meng
,
Q.
Wang
,
K.
Zhao
,
P.
Wang
,
P.
Liu
,
H.
Liu
, and
L.
Jiang
, “
Hydroactuated configuration alteration of fibrous dandelion pappi: Toward self-controllable transport behavior
,”
Adv. Funct. Mater.
26
,
7378
7385
(
2016
).
12.
C.
Cummins
,
M.
Seale
,
A.
Macente
,
D.
Certini
,
E.
Mastropaolo
,
I. M.
Viola
, and
N.
Nakayama
, “
A separated vortex ring underlies the flight of the dandelion
,”
Nature
562
,
414
418
(
2018
).
13.
M. C.
Andersen
, “
Diaspore morphology and seed dispersal in several wind-dispersed asteraceae
,”
Am. J. Bot.
80
,
487
492
(
1993
).
14.
P. G.
Ledda
,
L.
Siconolfi
,
F.
Viola
,
S.
Camarri
, and
F.
Gallaire
, “
Flow dynamics of a dandelion pappus: A linear stability approach
,”
Phys. Rev. Fluids
4
,
071901
(
2019
).
15.
M.
Sherman
and
M.
Hassanalian
, “
Design, fabrication, and testing of dandelion-inspired flying sensors for mars exploration
,” in
AIAA Scitech 2021 Forum
(
AIAA
,
2021
), p.
0962
.
16.
J. H.
Masliyah
and
M.
Polikar
, “
Terminal velocity of porous spheres
,”
Can. J. Chem. Eng.
58
,
299
302
(
1980
).
17.
P.
Yu
,
T. S.
Lee
,
Y.
Zeng
, and
H. T.
Low
, “
Fluid dynamics and oxygen transport in a micro-bioreactor with a tissue engineering scaffold
,”
Int. J. Heat Mass Transfer
52
,
316
327
(
2009
).
18.
P.
Yu
,
Y.
Zeng
,
T.
Lee
,
H.
Bai
, and
H.
Low
, “
Wake structure for flow past and through a porous square cylinder
,”
Int. J. Heat Fluid Flow
31
,
141
153
(
2010
).
19.
P.
Yu
,
Y.
Zeng
,
T. S.
Lee
,
X. B.
Chen
, and
H. T.
Low
, “
Steady flow around and through a permeable circular cylinder
,”
Comput. Fluids
42
,
1
12
(
2011
).
20.
P.
Yu
,
Y.
Zeng
,
T. S.
Lee
,
X. B.
Chen
, and
H. T.
Low
, “
Numerical simulation on steady flow around and through a porous sphere
,”
Int. J. Heat Fluid Flow
36
,
142
152
(
2012
).
21.
C.
Cummins
,
I. M.
Viola
,
E.
Mastropaolo
, and
N.
Nakayama
, “
The effect of permeability on the flow past permeable disks at low Reynolds numbers
,”
Phys. Fluids
29
,
097103
(
2017
).
22.
T.
Tang
,
J.
Xie
,
S.
Yu
,
J.
Li
, and
P.
Yu
, “
Effect of aspect ratio on flow through and around a porous disk
,”
Phys. Rev. Fluids
6
,
074101
(
2021
).
23.
M.
Liu
,
C.
Xie
,
M.
Yao
, and
J.
Yang
, “
Study on the near wake of a honeycomb disk
,”
Exp. Therm. Fluid Sci.
81
,
33
42
(
2017
).
24.
E.
Barta
and
D.
Weihs
, “
Creeping flow around a finite row of slender bodies in close proximity
,”
J. Fluid Mech.
551
,
1
17
(
2006
).
25.
T.
Tang
,
P.
Yu
,
S.
Yu
,
X.
Shan
, and
H.
Chen
, “
Connection between pore-scale and macroscopic flow characteristics of recirculating wake behind a porous cylinder
,”
Phys. Fluids
32
,
083606
(
2020
).
26.
M.
Seale
,
O.
Zhdanov
,
C.
Cummins
,
E.
Kroll
,
M.
Blatt
,
H.
Zare-Behtash
,
A.
Busse
,
E.
Mastropaolo
,
I. M.
Viola
, and
N.
Nakayama
, “
Informed dispersal of the dandelion
,” bioRxiv (
2020
).
27.
F.-S.
Qiu
,
T.-B.
He
, and
W.-Y.
Bao
, “
Effect of porosity on separated vortex rings of dandelion seeds
,”
Phys. Fluids
32
,
113104
(
2020
).
28.
Y.
Dong
,
K.
Hu
,
Y.
Wang
, and
Z.
Zhang
, “
The steady vortex and enhanced drag effects of dandelion seeds immersed in low-Reynolds-number flow
,”
AIP Adv.
11
,
085320
(
2021
).
29.
F. W.
Roos
and
W. W.
Willmarth
, “
Some experimental results on sphere and disk drag
,”
AIAA J.
9
,
285
291
(
1971
).
30.
S.
Sen
,
S.
Mittal
, and
G.
Biswas
, “
Flow past a square cylinder at low Reynolds numbers
,”
Int. J. Numer. Methods Fluids
67
,
1160
1174
(
2011
).
31.
A.
Shenoy
and
C.
Kleinstreuer
, “
Flow over a thin circular disk at low to moderate Reynolds numbers
,”
J. Fluid Mech.
605
,
253
262
(
2008
).
32.
S.
Vogel
,
Life in Moving Fluids: The Physical Biology of Flow-Revised and Expanded
, 2nd ed. (
Princeton University Press
,
2020
).
33.
K.
Divsalar
, “
Improving the hydrodynamic performance of the SUBOFF bare hull model: A CFD approach
,”
Acta Mechanica Sinica.
36
,
44
56
(
2020
).
You do not currently have access to this content.