In this manuscript, a general formulation of 3-dimensional compressible fluids based on the port-Hamiltonian framework is presented, both for isentropic and non-isentropic assumptions, describing the energy flux between the mechanical, chemical, and thermal domains, with an explicit characterization of the first and the second law of thermodynamics. For isentropic fluids, the conversion of kinetic energy into heat by viscous friction is considered as energy dissipation associated with the rotation and compression of the fluid. A dissipative port-Hamiltonian formulation is derived for this class of fluids, including vorticity boundary conditions in the port variables. For non-isentropic fluids, we consider a fluid mixture with multiple chemical reactions. To describe the energy fluxes, we propose a pseudo port-Hamiltonian formulation, which includes the rate of irreversible entropy creation by heat flux, chemical reaction, diffusion of matter, and viscous friction.

1.
A.
Macchelli
,
Y. L.
Gorrec
,
H.
Ramirez
, and
H.
Zwart
, “
On the synthesis of boundary control laws for distributed port-Hamiltonian systems
,”
IEEE Trans. Autom. Control
62
,
1700
1713
(
2017
).
2.
N. M. T.
Vu
,
L.
Lefèvre
, and
R.
Nouailletas
, “
Distributed and backstepping boundary controls to achieve IDA-PBC design
,”
IFAC-PapersOnLine
48
,
482
487
(
2015
).
3.
B.
Maschke
and
A.
van der Schaft
, “
Port-controlled Hamiltonian systems: Modelling origins and systemtheoretic properties
,”
IFAC Proc. Vols.
25
,
359
365
(
1992
).
4.
A.
van der Schaft
and
B.
Maschke
, “
On the Hamiltonian formulation of nonholonomic mechanical systems
,”
Rep. Math. Phys.
34
,
225
233
(
1994
).
5.
A.
van der Schaft
and
B.
Maschke
, “
Hamiltonian formulation of distributed-parameter systems with boundary energy flow
,”
J. Geom. Phys.
42
,
166
194
(
2002
).
6.
Y. L.
Gorrec
,
H.
Zwart
, and
B.
Maschke
, “
Dirac structures and boundary control systems associated with skew-symmetric differential operators
,”
SIAM J. Control Optim.
44
,
1864
1892
(
2005
).
7.
J. A.
Villegas
,
Y. L.
Gorrec
,
H.
Zwart
, and
B.
Maschke
, “
Boundary control for a class of dissipative differential operators including diffusion systems
,” in
Proceedings of 17th International Symposium on Mathematical Theory of Networks and Systems
, edited by
Y.
Yamamoto Kyoto
,
Japan
, 24–28 July 2006, pp.
297
304
; available at http://www-ics.acs.i.kyotou.ac.jp/~mtns2006/MTNS2006.pdf.
8.
A.
Brugnoli
,
G.
Haine
,
A.
Serhani
, and
X.
Vasseur
, “
Numerical approximation of port-Hamiltonian systems for hyperbolic or parabolic PDEs with boundary control
,”
J. Appl. Math. Phys.
09
,
1278
1321
(
2021
).
9.
P.
Kotyczka
,
Numerical Methods for Distributed Parameter Port-Hamiltonian Systems - Structure-Preserving Approaches for Simulation and Control
(
TUM University Press
,
2019
).
10.
A.
Serhani
,
D.
Matignon
, and
G.
Haine
, “
A partitioned finite element method for the structure-preserving discretization of damped infinite-dimensional port-Hamiltonian systems with boundary control
,” in
Geometric Science of Information. GSI 2019
, Lecture Notes in Computer Science, edited by
F.
Nielsen
and
F.
Barbaresco
(
Springer
,
Cham
,
2019
), Vol.
11712
, pp.
549
558
.
11.
A.
Serhani
,
G.
Haine
, and
D.
Matignon
, “
Anisotropic heterogeneous n-D heat equation with boundary control and observation: II. Structure-preserving discretization
,”
IFAC-PapersOnLine
52
,
57
62
(
2019
).
12.
N. M. T.
Vu
,
L.
Lefèvre
, and
B.
Maschke
, “
A structured control model for the thermo-magneto-hydrodynamics of plasmas in Tokamaks
,”
Math. Comput. Modell. Dyn. Syst.
22
,
181
206
(
2016
).
13.
H.
Ramirez
and
Y.
Le Gorrec
, “
Boundary port Hamiltonian control of a class of nanotweezers
,” in
2013 European Control Conference (ECC)
(
IEEE
,
2013
) pp.
566
571
.
14.
A.
Falaize
and
T.
Hélie
, “
Guaranteed-passive simulation of an electro-mechanical piano: A port-Hamiltonian approach
,” in
DAFx 2015—Proceedings of the 18th International Conference on Digital Audio Effects
,
Trondheimm
, Norway,
2015
.
15.
A.
Falaize
and
T.
Hélie
, “
Passive simulation of the nonlinear port-Hamiltonian modeling of a Rhodes piano
,”
J. Sound Vib.
390
,
289
309
(
2017
).
16.
S.
Khurshid
and
D. A.
Donzis
, “
Decaying compressible turbulence with thermal non-equilibrium
,”
Phys. Fluids
31
,
015103
(
2019
).
17.
F. J.
Beron-Vera
, “
Nonlinear saturation of thermal instabilities
,”
Phys. Fluids
33
,
036608
(
2021
).
18.
W.
Wu
and
J.
Wang
, “
Nonequilibrium thermodynamics of turbulence and stochastic fluid systems
,”
New J. Phys.
22
,
113017
(
2020
).
19.
N.
Zhan
,
R.
Chen
, and
Y.
You
, “
Discrete gas-kinetic scheme-based arbitrary Lagrangian-Eulerian method for moving boundary problems
,”
Phys. Fluids
33
,
067101
(
2021
).
20.
H. H.
Xu
and
X. I.
Yang
, “
Treatment of unphysical numerical oscillations via local grid refinement
,”
Phys. Fluids
33
,
077104
(
2021
).
21.
A.
Macchelli
,
Y. L.
Gorrec
, and
H.
Ramírez
, “
Boundary energy-shaping control of an ideal compressible isentropic fluid in 1-D
,”
IFAC-PapersOnLine
50
,
5598
5603
(
2017
).
22.
P.
Kotyczka
, “
Discretized models for networks of distributed parameter port-Hamiltonian systems
,” in
Proceedings of 8th International Workshop on Multidimensional Systems (nDS13)
(
VDE
,
Erlangen, Germany
,
2013
), Vol.
2
, pp.
63
67
.
23.
D.
Matignon
and
T.
Hélie
, “
A class of damping models preserving eigenspaces for linear conservative port-Hamiltonian systems
,”
Eur. J. Control
19
,
486
494
(
2013
).
24.
L. A.
Mora
,
Y.
Le Gorrec
,
D.
Matignon
,
H.
Ramírez
, and
J. I.
Yuz
, “
About dissipative and pseudo port-Hamiltonian formulations of irreversible Newtonian compressible flows
,”
IFAC-PapersOnLine
53
,
11521
11526
(
2020
).
25.
R.
Rashad
,
F.
Califano
,
F. P.
Schuller
, and
S.
Stramigioli
, “
Port-Hamiltonian modeling of ideal fluid flow: Part II. Compressible and incompressible flow
,”
J. Geom. Phys.
164
,
104199
(
2021
).
26.
F.
Califano
,
R.
Rashad
,
F. P.
Schuller
, and
S.
Stramigioli
, “
Geometric and energy-aware decomposition of the Navier-Stokes equations: A port-Hamiltonian approach
,”
Phys. Fluids
33
,
047114
(
2021
).
27.
R.
Altmann
and
P.
Schulze
, “
A port-Hamiltonian formulation of the Navier-Stokes equations for reactive flows
,”
Syst. Control Lett.
100
,
51
55
(
2017
).
28.
M.
Grmela
and
H. C.
Öttinger
, “
Dynamics and thermodynamics of complex fluids. I. Development of a general formalism
,”
Phys. Rev. E
56
,
6620
6632
(
1997
).
29.
H. C.
Öttinger
and
M.
Grmela
, “
Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism
,”
Phys. Rev. E
56
,
6633
6655
(
1997
).
30.
H. C.
Öttinger
, “
Nonequilibrium thermodynamics for open systems
,”
Phys. Rev. E
73
,
036126
(
2006
).
31.
M.
Grmela
, “
Generic guide to the multiscale dynamics and thermodynamics
,”
J. Phys. Commun.
2
,
032001
(
2018
).
32.
A. M.
Badlyan
,
B.
Maschke
,
C.
Beattie
, and
V.
Mehrmann
, “
Open physical systems: From GENERIC to port-Hamiltonian systems
,” in
23rd International Symposium on Mathematical Theory of Networks and Systems
,
Hong Kong
,
2018
, pp.
204
211
.
33.
H.
Ramirez
,
Y. L.
Gorrec
, and
B.
Maschke
, “
Boundary controlled irreversible port-Hamiltonian systems
,”
Chem. Eng. Sci.
248
,
117107
(
2022
).
34.
P. J.
Hadwin
,
B. D.
Erath
, and
S. D.
Peterson
, “
The influence of flow model selection on finite element model parameter estimation using Bayesian inference
,”
JASA Exp. Lett.
1
,
045204
(
2021
).
35.
S. L.
Thomson
,
L.
Mongeau
, and
S. H.
Frankel
, “
Aerodynamic transfer of energy to the vocal folds
,”
J. Acoust. Soc. Am.
118
,
1689
1700
(
2005
).
36.
G. J.
Gassner
and
A. R.
Winters
, “
A novel robust strategy for discontinuous Galerkin methods in computational fluid mechanics: Why? when? what? where?
,”
Front. Physics
8
,
1
24
(
2021
).
37.
A. I.
Guryanov
,
S. A.
Piralishvili
,
M. M.
Guryanova
,
O. A.
Evdokimov
, and
S. V.
Veretennikov
, “
Counter-current hydrogen-oxygen vortex combustion chamber. Thermal physics of processing
,”
J. Energy Inst.
93
,
634
641
(
2020
).
38.
Y.
Ji
,
C.
Lin
, and
K. H.
Luo
, “
Three-dimensional multiple-relaxation-time discrete Boltzmann model of compressible reactive flows with nonequilibrium effects
,”
AIP Adv.
11
,
045217
(
2021
).
39.
K.
Pandey
,
K.
Chattopadhyay
, and
S.
Basu
, “
Combustion dynamics of low vapour pressure nanofuel droplets
,”
Phys. Fluids
29
,
074102
(
2017
).
40.
A.
Hoda
,
T. M. R.
Rahman
,
W.
Asrar
, and
S. A.
Khan
, “
A comparative study of natural gas and biogas combustion in a swirling flow gas turbine combustor
,”
Combust. Sci. Technol.
(published online,
2021
).
41.
T.
Lei
and
K. H.
Luo
, “
Lattice Boltzmann simulation of multicomponent porous media flows with chemical reaction
,”
Front. Phys.
9
,
715791
(
2021
).
42.
C. H.
Bhuvan
,
K.
Hiranandani
,
B.
Aravind
,
V.
Nair
, and
S.
Kumar
, “
Novel flame dynamics in rich mixture of premixed propane-air in a planar microcombustor
,”
Phys. Fluids
32
,
103604
(
2020
).
43.
V.
Duindam
,
A.
Macchelli
,
S.
Stramigioli
, and
H.
Bruyninckx
,
Modeling and Control of Complex Physical Systems
(
Springer
Berlin Heidelberg, Berlin, Heidelberg
,
2009
).
44.
R. B.
Bird
,
W. E.
Stewart
, and
E. N.
Lightfoot
,
Transport Phenomena
, 2nd ed. (
John Wiley & Sons, Inc
.,
2007
).
45.
F. L.
Cardoso-Ribeiro
, “
Port-Hamiltonian modeling and control of a fluid-structure system: Application to sloshing phenomena in a moving container coupled to a flexible structure
,” Doctoral thesis (
Université Fédérale Toulouse Midi-Pyrénées
,
2016
).
46.
F. L.
Cardoso-Ribeiro
,
D.
Matignon
, and
V.
Pommier-Budinger
, “
Port-Hamiltonian model of two-dimensional shallow water equations in moving containers
,”
IMA J. Math. Control Inf.
37
,
1348
1366
(
2020
).
47.
A. J.
Chorin
and
J. E.
Marsden
,
A Mathematical Introduction to Fluid Mechanics
, Texts in Applied Mathematics (
Springer New York
,
New York
,
1993
), Vol.
4
.
48.
M. D.
Gunzburger
and
P. B.
Bochev
,
Least-Squares Finite Element Methods
, Applied Mathematical Sciences (
Springer
New York, New York
,
2009
), Vol.
166
.
49.
D.
Boffi
,
F.
Brezzi
, and
M.
Fortin
,
Mixed Finite Element Methods and Applications
, Springer Series in Computational Mathematics (
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2013
), Vol.
44
.
50.
M.
Costabel
, “
Inequalities of babuška'Aziz and Friedrichs-Velte for differential forms
,” in
Recent Trends in Operator Theory and Partial Differential Equations
, Operator Theory: Advances and Applications, edited by
V.
Maz'ya
,
D.
Natroshvili
,
E.
Shargorodsky
, and
W.
Wendland
(
Birkhäuser
,
Cham
,
2017
), Vol.
258
, pp.
79
88
.
51.
V.
Ruas
, “
A new formulation of the three-dimensional velocity-vorticity system in viscous incompressible flow
,”
ZAMM
79
,
29
36
(
1999
).
52.
M. A.
Olshanskii
,
T.
Heister
,
L. G.
Rebholz
, and
K. J.
Galvin
, “
Natural vorticity boundary conditions on solid walls
,”
Comput. Methods Appl. Mech. Eng.
297
,
18
37
(
2015
).
53.
L.
Landau
and
E.
Lifshitz
,
Fluid Mechanics
, Course of Theoretical Physics, 2nd ed. (
Pergamon Press
,
1987
), Vol.
6
.
54.
H. C.
Öttinger
,
Beyond Equilibrium Thermodynamics
(
John Wiley & Sons, Inc
.,
Hoboken, NJ
,
2005
).
55.
D.
Kondepudi
and
I.
Prigogine
,
Modern Thermodynamics
, 2nd ed. (
John Wiley & Sons
,
Ltd
.,
2014
).
56.
H. J.
Merk
, “
The macroscopic equations for simultaneous heat and mass transfer in isotropic, continuous and closed systems
,”
Appl. Sci. Res.
8
,
73
99
(
1959
).
57.
A.
Brugnoli
,
D.
Alazard
,
V.
Pommier-Budinger
, and
D.
Matignon
, “
Port-Hamiltonian formulation and symplectic discretization of plate models Part I: Mindlin model for thick plates
,”
Appl. Math. Modell.
75
,
940
960
(
2019
).
You do not currently have access to this content.