We propose a novel formulation of capillarity, which geometrically extends the Bosanquet equation to irregular geometries, taking the effect of inertia and the dynamic contact angle into account. The governing equation is an integrodifferential equation that is solved numerically and compared with computer simulations, experimental data, and other cases available in the literature. The numerical examples investigated in this work show that contrary to flat channels and tubes, inertial effects decay much slower in corrugated channels and tubes due to the walls' geometrical fluctuations. We also draw the paramount conclusion that the true solution for Jurin's height in irregular capillaries is path-dependent and highly sensitive to the initial conditions, and no single static-equilibrium solution can necessarily be attributed to the eventual position of the meniscus. Resulting from the non-linear dynamics, the multiple equilibria in the presence of gravity for irregular capillaries can only be analyzed if the effect of inertia is considered, which has largely been neglected in the literature thus far.

1.
R.
Masoodi
,
K. M.
Pillai
, and
M.
Krishna
,
Wicking in Porous Materials: Traditional and Modern Modeling Approaches
(
CRC Press
,
2012
).
2.
P. G.
de Gennes
,
F.
Brochard-Wyart
,
D.
Quéré
,
P.-G.
de Gennes
,
F.
Brochard-Wyart
, and
D.
Quéré
,
Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves
(
Springer
,
New York
,
2004
).
3.
W.
Zheng
,
B.
Wen
,
C.
Sun
, and
B.
Bai
, “
Effects of surface wettability on contact line motion in liquid–liquid displacement Effects of surface wettability on contact line motion in liquid–liquid displacement
,”
Phys. Fluids
33
,
082101
(
2021
).
4.
M. H.
Zimmermann
,
Xylem Structure and the Ascent of Sap
(
Springer
,
1983
).
5.
A. R.
Parker
and
C. R.
Lawrence
, “
Water capture by a desert beetle
,”
Nature
414
(
6859
),
33
34
(
2001
).
6.
P.
Comanns
, “
Erratum: Passive water collection with the integument: Mechanisms and their biomimetic potential
,”
J. Exp. Biol.
221
,
jeb153130
(
2018
).
7.
D.
Gurera
and
B.
Bhushan
, “
Passive water harvesting by desert plants and animals: Lessons from nature
,”
Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
378
(
2167
),
20190444
(
2020
).
8.
W.
Kim
,
F.
Peaudecerf
,
M. W.
Baldwin
, and
J. W. M.
Bush
, “
The hummingbird's tongue: A self-assembling capillary syphon
,”
Proc. R. Soc. B: Biol. Sci.
279
(
1749
),
4990
4996
(
2012
).
9.
W.
Kim
and
J. W. M.
Bush
, “
Natural drinking strategies
,”
J. Fluid Mech.
705
,
7
25
(
2012
).
10.
R. A.
Samy
,
D.
George
, and
A. K.
Sen
, “
Bio-inspired liquid transport via elastocapillary interaction of a thin membrane with a liquid meniscus
,”
Soft Matter
13
(
38
),
6858
6869
(
2017
).
11.
G. L.
MacLean
, “
Water transport by Sandgrouse
,”
BioScience
33
(
6
),
365
369
(
1983
).
12.
T. W.
Kim
and
B.
Bhushan
, “
The adhesion model considering capillarity for gecko attachment system
,”
J. R. Soc. Interface
5
(
5
),
319
327
(
2008
).
13.
H. E.
Jeong
,
S. H.
Lee
,
P.
Kim
, and
K. Y.
Suh
, “
High aspect-ratio polymer nanostructures by tailored capillarity and adhesive force
,”
Colloids Surf. A: Physicochem. Eng. Aspects
313–314
,
359
364
(
2008
).
14.
S.
Feng
,
P.
Zhu
,
H.
Zheng
,
H.
Zhan
,
C.
Chen
,
J.
Li
,
L.
Wang
,
X.
Yao
,
Y.
Liu
, and
Z.
Wang
, “
Three-dimensional capillary ratchet-induced liquid directional steering
,”
Science
373
(
6561
),
1344
1348
(
2021
).
15.
S.
Kar
,
T. K.
Maiti
, and
S.
Chakraborty
, “
Capillarity-driven blood plasma separation on paper-based devices
,”
Analyst
140
(
19
),
6473
6476
(
2015
).
16.
M. S.
Maria
,
P. E.
Rakesh
,
T. S.
Chandra
, and
A. K.
Sen
, “
Capillary flow-driven microfluidic device with wettability gradient and sedimentation effects for blood plasma separation
,”
Sci. Rep.
7
,
1
12
(
2017
).
17.
H.
Wu
,
C.
Shi
,
Q.
Zhu
,
Y.
Li
,
Z.
Xu
,
C.
Wei
,
D.
Chen
, and
X.
Huang
, “
Capillary-driven blood separation and in-situ electrochemical detection based on 3D conductive gradient hollow fiber membrane
,”
Biosens. Bioelectron.
171
,
112722
(
2021
).
18.
A. R.
Pries
,
D.
Neuhaus
, and
P.
Gaehtgens
, “
Blood viscosity in tube flow: Dependence on diameter and hematocrit
,”
Am. J. Physiol.—Heart Circ. Physiol.
263
(
6
),
32
36
(
1992
).
19.
S.
Kim
,
Y. I.
Cho
,
A. H.
Jeon
,
B.
Hogenauer
, and
K. R.
Kensey
, “
A new method for blood viscosity measurement
,”
J. Non-Newtonian Fluid Mech.
94
(
1
),
47
56
(
2000
).
20.
M.
Kvick
,
D.
Mark Martinez
,
D. R.
Hewitt
, and
N. J.
Balmforth
, “
Imbibition with swelling: Capillary rise in thin deformable porous media
,”
Phys. Rev. Fluids
2
(
7
),
074001
(
2017
).
21.
M.
Mirzajanzadeh
,
V. S.
Deshpande
, and
N. A.
Fleck
, “
Water rise in a cellulose foam: By capillary or diffusional flow?
,”
J. Mech. Phys. Solids
124
,
206
219
(
2019
).
22.
J. P.
Singh
and
B. K.
Behera
, “
Performance of terry towel—A critical review part I: Water absorbency
,”
J. Text. Apparel Technol. Manage.
9
(
1
),
1
14
(
2014
).
23.
Z.
Tavassoli
,
R. W.
Zimmerman
, and
M. J.
Blunt
, “
Analytic analysis for oil recovery during counter-current imbibition in strongly water-wet systems
,”
Transp. Porous Media
58
(
58
),
173
189
(
2005
).
24.
W.
Green
and
G. A.
Ampt
, “
Study on soil physics
,”
J. Agric. Sci.
4
(
1
),
1
(
1911
).
25.
F.
Dullien
, “
2—Capillarity in porous media
,” in
Porous Media: Fluid Transport and Pore Structure
(
Academic Press
,
1979
), pp.
5
74
.
26.
H.
Czachor
, “
Modelling the effect of pore structure and wetting angles on capillary rise in soils having different wettabilities
,”
J. Hydrol.
328
(
3–4
),
604
613
(
2006
).
27.
L.
Courbin
,
E.
Denieul
,
E.
Dressaire
,
M.
Roper
,
A.
Ajdari
, and
H. A.
Stone
, “
Imbibition by polygonal spreading on microdecorated surfaces
,”
Nat. Mater.
6
(
9
),
661
664
(
2007
).
28.
J.
Andersson
,
A.
Larsson
, and
A.
Ström
, “
Stick-slip motion and controlled filling speed by the geometric design of soft micro-channels
,”
J. Colloid Interface Sci.
524
,
139
147
(
2018
).
29.
J.
Kim
,
M. W.
Moon
, and
H. Y.
Kim
, “
Capillary rise in superhydrophilic rough channels
,”
Phys. Fluids
32
(
3
),
032105
(
2020
).
30.
Y. V.
Najdich
,
I. I.
Gab
,
V. A.
Evdokimov
,
D. I.
Kurkova
, and
T.
Stetsyuk
, “
Shape of a liquid surface and capillary phenomena under reduced or zero gravity
,”
Poroshk. Metall.
43
(
3–4
),
70
79
(
2004
).
31.
M. M.
Weislogel
, “
Compound capillary rise
,”
J. Fluid Mech.
709
,
622
647
(
2012
).
32.
T.
Tarnev
,
S.
Cychy
,
C.
Andronescu
,
M.
Muhler
,
W.
Schuhmann
, and
Y. T.
Chen
, “
A universal nano-capillary based method of catalyst immobilization for liquid-cell transmission electron microscopy
,”
Angew. Chem.—Int. Ed.
59
(
14
),
5586
5590
(
2020
).
33.
A.
Lundberg
,
J.
Örtegren
,
E.
Alfthan
, and
G.
Ström
, “
Paper-ink interactions: Microscale droplet absorption into paper for inkjet printing
,”
Nord. Pulp Pap. Res. J.
26
(
1
),
142
150
(
2011
).
34.
N. O.
Young
, “
Capillary lubrication
,”
Nature
216
(
63
),
1246
(
1967
).
35.
T.
Young
, “
An essay on cohesion of fluids
,”
Philos. Trans. R. Soc. London
95
,
65
87
(
1805
).
36.
P.
de Laplace
,
Traité de mécanique céleste
(
Imprimerie de Crapelet
,
1805
), Vol.
VII
.
37.
J.
Jurin
, “
An account of some experiments shown before the royal society; with an enquiry into the cause of some of the ascent and suspension of water in capillary tubes
,”
Philos. Trans. R. Soc. London
30
,
739
747
(
1718
).
38.
J.
Jurin
, “
An account of some new experiments, relating to the action of glass tubes upon water and quicksilver
,”
Philos. Trans. R. Soc. London
30
,
1083
1096
(
1719
).
39.
J. M.
Bell
and
F. K.
Cameron
, “
The flow of liquids through capillary spaces
,”
J. Phys. Chem.
10
(
8
),
658
674
(
1906
).
40.
E. W.
Washburn
, “
The dynamics of capillary flow
,”
Phys. Rev.
17
(
3
),
273
283
(
1921
).
41.
V. R.
Lucas
, “
Überber das zeitgesetz des kapillaren aufstiegs von flüssigkeiten
,”
Kolloid Zeistschrift
23
,
15
22
(
1918
).
42.
M.
Reyssat
,
L.
Courbin
,
E.
Reyssat
, and
H. A.
Stone
, “
Imbibition in geometries with axial variations
,”
J. Fluid Mech.
615
,
335
344
(
2008
).
43.
D.
Quéré
, “
Inertial capillarity
,”
Europhys. Lett.
39
(
5
),
533
(
1997
).
44.
K. G.
Kornev
and
A. V.
Neimark
, “
Spontaneous penetration of liquids into capillaries and porous membranes revisited
,”
J. Colloid Interface Sci.
235
(
1
),
101
113
(
2001
).
45.
C. H.
Bosanquet
, “
On the flow of liquids into capillary tubes
,”
Philos. Mag.
45
,
525
531
(
1923
).
46.
M.
Stange
,
M. E.
Dreyer
, and
H. J.
Rath
, “
Capillary driven flow in circular cylindrical tubes
,”
Phys. Fluids
15
(
9
),
2587
2601
(
2003
).
47.
S.
Das
and
S. K.
Mitra
, “
Different regimes in vertical capillary filling
,”
Phys. Rev. E
87
(
6
),
63005
(
2013
).
48.
N.
Fries
and
M.
Dreyer
, “
The transition from inertial to viscous flow in capillary rise
,”
J. Colloid Interface Sci.
327
(
1
),
125
128
(
2008
).
49.
M.
Dreyer
,
A.
Delgado
,
H. J.
Path
,
T. W.
Gyves
, and
T. F.
Irvine
, “
Capillary rise of liquid between parallel plates under microgravity
,”
J. Colloid Interface Sci.
163
(
1
),
158
168
(
1994
).
50.
S.
Das
,
P. R.
Waghmare
, and
S. K.
Mitra
, “
Early regimes of capillary filling
,”
Phys. Rev. E
86
(
6
),
67301
(
2012
).
51.
S.
Chen
,
Z.
Ye
,
L.
Duan
, and
Q.
Kang
, “
Capillary driven flow in oval tubes under microgravity capillary driven flow in oval tubes under microgravity
,”
Phys. Fluids
33
,
032111
(
2020
).
52.
H.-Y. Y.
Kim
and
L.
Mahadevan
, “
Capillary rise between elastic sheets
,”
J. Fluid Mech.
548
,
141
150
(
2006
).
53.
A. D.
Gat
and
M.
Gharib
, “
Elasto-capillary coalescence of multiple parallel sheets
,”
J. Fluid Mech.
723
,
692
705
(
2013
).
54.
B.
Nasouri
,
B.
Thorne
, and
G. J.
Elfring
, “
Dynamics of poroelastocapillary rise
,”
J. Fluids Struct.
85
,
220
228
(
2019
).
55.
J.
Bico
,
B.
Roman
,
L.
Moulin
, and
A.
Boudaoud
, “
Elastocapillary coalescence in wet hair
,”
Nature
432
(
7018
),
690
(
2004
).
56.
J.
Bico
,
É.
Reyssat
, and
B.
Roman
, “
Elastocapillarity: When surface tension deforms elastic solids
,”
Annu. Rev. Fluid Mech.
50
(
1
),
629
659
(
2018
).
57.
T. L.
Staples
and
D. G.
Shaffer
, “
Wicking flow in irregular capillaries
,”
Colloids Surf.: Physicochem. Eng. Aspects
204
,
477
(
2001
).
58.
J. C.
Cai
,
B. M.
Yu
,
M. F.
Mei
, and
L.
Luo
, “
Capillary rise in a single tortuous capillary
,”
Chin. Phys. Lett.
27
(
5
),
054701
(
2010
).
59.
L.
Hathout
and
H. M.
Do
, “
Vascular tortuosity: A mathematical modeling perspective
,”
J. Physiol. Sci.
62
(
2
),
133
145
(
2012
).
60.
K. A.
Polzin
and
E. Y.
Choueiri
, “
A similarity parameter for capillary flows
,”
J. Phys. D: Appl. Phys.
36
(
24
),
3156
3167
(
2003
).
61.
W. B.
Young
, “
Analysis of capillary flows in non-uniform cross-sectional capillaries
,”
Colloids Surf. A: Physicochem. Eng. Aspects
234
(
1–3
),
123
128
(
2004
).
62.
A.
Shobeiri
and
M.
Ponga
, “
Dynamics of capillary rise in sinusoidal corrugated channels
,” in
Progress in Paper Physics Seminar
(
2020
).
63.
B.
Figliuzzi
and
C. R.
Buie
, “
Rise in optimized capillary channels
,”
J. Fluid Mech.
731
,
142
161
(
2013
).
64.
J.-B.
Gorce
,
I. J.
Hewitt
, and
D.
Vella
, “
Capillary imbibition into converging tubes: Beating Washburn's law and the optimal imbibition of liquids
,”
Langmuir
32
(
6
),
1560
1567
(
2016
).
65.
B. K.
Primkulov
,
A. A.
Pahlavan
,
X.
Fu
,
B.
Zhao
,
C. W.
MacMinn
, and
R.
Juanes
, “
Signatures of fluid–fluid displacement in porous media: Wettability, patterns and pressures
,”
J. Fluid Mech.
875
,
R4
(
2019
).
66.
M. R.
Rokhforouz
and
H. A.
Amiri
, “
Phase-field simulation of counter-current spontaneous imbibition in a fractured heterogeneous porous medium
,”
Phys. Fluids
29
,
062104
(
2019
).
67.
I.
Jafari
,
M.
Masihi
, and
M.
Zarandi
, “
Numerical simulation of counter-current spontaneous imbibition in water-wet fractured porous media: Influences of water injection velocity, fracture aperture, and grains geometry
,”
Phys. Fluids
29
,
122004
(
2017
).
68.
J.
Mcclure
,
S.
Berg
, and
R.
Armstrong
, “
Capillary fluctuations and energy dynamics for flow in porous media Capillary fluctuations and energy dynamics for flow in porous media
,”
Phys. Fluids
33
,
083323
(
2021
).
69.
W.
Lin
,
S.
Xiong
,
Y.
Liu
,
Y.
He
,
S.
Chu
, and
S.
Liu
, “
Spontaneous imbibition in tight porous media with different wettability: Pore-scale simulation
,”
Phys. Fluids
33
(
3
),
032013
(
2021
).
70.
T. L.
Bergman
, “
Computational simulation of spontaneous liquid penetration and depression between vertical parallel plates
,”
J. Fluids Eng.
143
,
051302
(
2021
).
71.
S.
Pavuluri
,
J.
Maes
, and
F.
Doster
, “
Spontaneous imbibition in a microchannel: Analytical solution and assessment of volume of fluid formulations
,”
Microfluid. Nanofluid.
22
(
8
),
90
(
2018
).
72.
D.
Erickson
,
D.
Li
, and
C. B.
Park
, “
Numerical simulations of capillary-driven flows in nonuniform cross-sectional capillaries
,”
J. Colloid Interface Sci.
250
(
2
),
422
430
(
2002
).
73.
R.
Chassagne
,
F.
Dörfler
,
M.
Guyenot
, and
J.
Harting
, “
Modeling of capillary-driven flows in axisymmetric geometries
,”
Comput. Fluids
178
,
132
140
(
2019
).
74.
J.
Lei
,
Z.
Xu
,
F.
Xin
, and
T. J.
Lu
, “
Dynamics of capillary flow in an undulated tube dynamics of capillary flow in an undulated tube
,”
Phys. Fluids
33
,
052109
(
2021
).
75.
J.
Marston
,
G.
Toyofuku
,
C.
Li
,
T.
Truscott
, and
J.
Uddin
, “
Drainage, rebound and oscillation of a meniscus in a tube
,”
Phys. Fluids
30
(
8
),
82103
(
2018
).
76.
A. O.
Parry
,
C.
Rascón
,
E. A. G.
Jamie
, and
D. G. A. L.
Aarts
, “
Capillary emptying and short-range wetting
,”
Phys. Rev. Lett.
108
,
246101
(
2012
).
77.
F. M.
White
and
J.
Majdalani
, “
Solutions to Newtonian-flow equations
,” in
Viscous Fluid Flow
(
McGraw-Hill Education
,
2021
), Chap. 3.
78.
S.
Levine
,
J.
Lowndes
,
E. J.
Watson
, and
G.
Neale
, “
A theory of capillary rise of a liquid in a vertical cylindrical tube and in a parallel-plate channel: Washburn equation modified to account for the meniscus with slippage at the contact line
,”
J. Colloid Interface Sci.
73
(
1
),
136
151
(
1980
).
79.
M.
Germano
, “
The Dean equations extended to a helical pipe flow
,”
J. Fluid Mech.
203
,
289
305
(
1989
).
80.
P. M.
Ligrani
and
R. D.
Niver
, “
Flow visualization of dean vortices in a curved channel with 40 to 1 aspect ratio
,”
Phys. Fluids
31
(
12
),
3605
3617
(
1988
).
81.
Y.
Xiao
,
F.
Yang
, and
R.
Pitchumani
, “
A generalized analysis of capillary flows in channels
,”
J. Colloid Interface Sci.
298
(
2
),
880
888
(
2006
).
82.
C. L.
Trabi
,
F. F.
Ouali
,
G.
McHale
,
H.
Javed
,
R. H.
Morris
, and
M. I.
Newton
, “
Capillary penetration into inclined circular glass tubes
,”
Langmuir
32
(
5
),
1289
1298
(
2016
).
83.
J. U.
Brackbill
,
D. B.
Kothe
, and
C.
Zemach
, “
A continuum method for modeling surface tension
,”
J. Comput. Phys.
100
(
2
),
335
354
(
1992
).
84.
H.
Pehlivan
, “
Experimental investigation of convection heat transfer in converging—diverging wall channels
,”
Int. J. Heat Mass Transfer
66
,
128
138
(
2013
).
85.
A.
Dinçer
and
C.
Zamfirescu
, “
Appendix B: Thermophysical properties of water
,” in
Drying Phenomena: Theory and Applications
(
John Wiley & Sons
,
Ltd
,
2016
).

Supplementary Material

You do not currently have access to this content.