Motivated by the enlightenment that diminishing the jump at the cell boundary can effectively reduce numerical dissipation near the critical region, and a novel constrained interpolation profile conservative semi-Lagrangian method is proposed based on a newly designed boundary variation diminishing algorithm. First, a constrained interpolation profile conservative semi-Lagrangian scheme with the piecewise tangent of hyperbola for interface capturing scheme is proposed as one candidate to represent jump-like discontinuities. Second, the constrained interpolation profile conservative semi-Lagrangian scheme with a fourth-order weighted essentially non-oscillatory limiter is used as another candidate to keep the high-order and non-oscillatory reconstruction for smooth solutions. The selection criterion of these two candidates is designed by minimizing the total variations of the first derivative at cell boundaries. A unified pressure-based projection formulation with a fractional step procedure is implemented with the proposed scheme to simulate both compressible and incompressible flows. A variety of numerical tests are studied, including linear and nonlinear scalar wave transport problems and compressible and incompressible flow problems. Results show that the proposed method can effectively eliminate numerical oscillation and diffusion, suggesting it has great potential to be applied to various types of engineering problems including both compressible and incompressible flows.

1.
S. M.
Safdari
,
O.
Mahian
, and
M. H.
Doranehgard
, “
Special topic on turbulent and multiphase flows
,”
Phys. Fluids
33
(
9
),
090401
(
2021
).
2.
K.
Zhang
,
S.
Hayostek
,
M.
Amitay
,
W.
He
,
V.
Theofilis
, and
K.
Taira
, “
On the formation of three-dimensional separated flows over wings under tip effects
,”
J. Fluid Mech.
895
,
A9
(
2020
).
3.
M.
Doosttalab
and
O.
Frommann
, “
Multidisciplinary design and verification of the HB flatback airfoil family
,”
AIAA J.
57
(
11
),
4639
4649
(
2019
).
4.
M.
Dellacasagrande
,
D.
Lengani
,
D.
Simoni
,
J. O.
Pralits
,
K.
Durovich
,
A.
Hanifi
, and
D.
Henningson
, “
Statistical characterization of free-stream turbulence induced transition under variable Reynolds number, free-stream turbulence, and pressure gradient
,”
Phys. Fluids
33
(
9
),
094115
(
2021
).
5.
A.
Broatch
,
R.
Novella
,
J.
García-Tíscar
,
J.
Gomez-Soriano
, and
P.
Pal
, “
Analysis of combustion acoustic phenomena in compression-ignition engines using large eddy simulation
,”
Phys. Fluids
32
(
8
),
085101
(
2020
).
6.
Z.
Du
,
W.
Huang
,
L.
Yan
, and
S.
Li
, “
Reynolds-average Navier-Stokes study of steady and pulsed gaseous jets with different periods for the shock-induced combustion ramjet engine
,”
Phys. Fluids
31
(
5
),
055107
(
2019
).
7.
S.
Shima
,
K.
Nakamura
,
H.
Gotoda
,
Y.
Ohmichi
, and
S.
Matsuyama
, “
Formation mechanism of high-frequency combustion oscillations in a model rocket engine combustor
,”
Phys. Fluids
33
(
6
),
064108
(
2021
).
8.
Z.
Li
,
Y.
Ju
, and
C.
Zhang
, “
Parallel large eddy simulations of transitional flow in a compressor cascade with endwalls
,”
Phys. Fluids
31
(
11
),
115104
(
2019
).
9.
A.
Sengupta
and
P.
Tucker
, “
Effects of forced frequency oscillations and free stream turbulence on the separation-induced transition in pressure gradient dominated flows
,”
Phys. Fluids
32
(
10
),
104105
(
2020
).
10.
M.
Manolesos
and
G.
Papadakis
, “
Investigation of the three-dimensional flow past a flatback wind turbine airfoil at high angles of attack
,”
Phys. Fluids
33
(
8
),
085106
(
2021
).
11.
P.
Samuthira
,
S.
Jawahar
, and
S.
Mittal
, “
Wake transitions and laminar separation bubble in the flow past an Eppler 61 airfoil
,”
Phys. Fluids
31
(
11
),
114102
(
2019
).
12.
P.
Reinke
,
M.
Schmidt
, and
T.
Beckmann
, “
The cavitating Taylor-Couette flow
,”
Phys. Fluids
30
(
10
),
104101
(
2018
).
13.
X.
Zhang
,
M.
Ge
,
G.
Zhang
, and
C. D.
Oliver
, “
Compressible effects modeling for turbulent cavitating flow in a small venturi channel: An empirical turbulent eddy viscosity correction
,”
Phys. Fluids
33
(
3
),
035148
(
2021
).
14.
S.
Yang
and
C.
Habchi
, “
Real-fluid phase transition in cavitation modeling considering dissolved non-condensable gas
,”
Phys. Fluids
32
(
3
),
032102
(
2020
).
15.
E.
Kadivar
,
M. V.
Timoshevskiy
,
M. Y.
Nichik
,
O.
el Moctar
,
T. E.
Schellin
, and
K. S.
Pervunin
, “
Control of unsteady partial cavitation and cloud cavitation in marine engineering and hydraulic systems
,”
Phys. Fluids
32
(
5
),
052108
(
2020
).
16.
F.
Xiao
, “
Unified formulation for compressible and incompressible flows by using multi-integrated moments I: One-dimensional inviscid compressible flow
,”
J. Comput. Phys.
195
(
2
),
629
654
(
2004
).
17.
F.
Xiao
,
R.
Akoh
, and
S.
Ii
, “
Unified formulation for compressible and incompressible flows by using multi-integrated moments II: Multi-dimensional version for compressible and incompressible flows
,”
J. Comput. Phys.
213
(
1
),
31
56
(
2006
).
18.
B.
Xie
,
X.
Deng
,
Z.
Sun
, and
F.
Xiao
, “
A hybrid pressure-density-based Mach uniform algorithm for 2d Euler equations on unstructured grids by using multi-moment finite volume method
,”
J. Comput. Phys.
335
,
637
663
(
2017
).
19.
L.
Zhang
,
Z.
Chen
,
L.
Yang
, and
C.
Shu
, “
An improved discrete gas-kinetic scheme for two-dimensional viscous incompressible and compressible flows
,”
Phys. Fluids
31
(
6
),
066103
(
2019
).
20.
Y.
Zhu
,
C.
Zhong
, and
K.
Xu
, “
Unified gas-kinetic scheme with multigrid convergence for rarefied flow study
,”
Phys. Fluids
29
(
9
),
096102
(
2017
).
21.
Y.
Zhu
,
C.
Zhong
, and
K.
Xu
, “
An implicit unified gas-kinetic scheme for unsteady flow in all Knudsen regimes
,”
J. Comput. Phys.
386
,
190
217
(
2019
).
22.
L.
Yang
,
C.
Shu
,
Y.
Wang
, and
Y.
Sun
, “
Development of discrete gas kinetic scheme for simulation of 3d viscous incompressible and compressible flows
,”
J. Comput. Phys.
319
,
129
144
(
2016
).
23.
L. M.
Yang
,
C.
Shu
, and
Y.
Wang
, “
Development of a discrete gas-kinetic scheme for simulation of two-dimensional viscous incompressible and compressible flows
,”
Phys. Rev. E
93
,
033311
(
2016
).
24.
X.
Nogueira
,
L.
Ramírez
,
S.
Khelladi
,
J. C.
Chassaing
, and
I.
Colominas
, “
A high-order density-based finite volume method for the computation of all-speed flows
,”
Comput. Methods Appl. Mech. Eng.
298
,
229
251
(
2016
).
25.
C. M.
Xisto
,
J. C.
Páscoa
,
P. J.
Oliveira
, and
D. A.
Nicolini
, “
A hybrid pressure-density-based algorithm for the Euler equations at all Mach number regimes
,”
Int. J. Numer. Methods Fluids
70
(
8
),
961
976
(
2012
).
26.
T.
Yabe
,
R.
Tanaka
,
T.
Nakamura
, and
F.
Xiao
, “
An exactly conservative semi-Lagrangian scheme (CIP-CSL) in one dimension
,”
Mon. Weather Rev.
129
(
2
),
332
344
(
2001
).
27.
T.
Yabe
,
F.
Xiao
, and
T.
Utsumi
, “
The constrained interpolation profile method for multiphase analysis
,”
J. Comput. Phys.
169
(
2
),
556
593
(
2001
).
28.
F.
Xiao
and
T.
Yabe
, “
Completely conservative and oscillationless semi-Lagrangian schemes for advection transportation
,”
J. Comput. Phys.
170
(
2
),
498
522
(
2001
).
29.
F.
Xiao
,
T.
Yabe
,
X.
Peng
, and
H.
Kobayashi
, “
Conservative and oscillation-less atmospheric transport schemes based on rational functions
,”
J. Geophys. Res.
107
(
D22
),
1
11
, (
2002
).
30.
A.
Harten
,
B.
Engquist
,
S.
Osher
, and
S. R.
Chakravarthy
, “
Uniformly high order accurate essentially non-oscillatory schemes, III
,”
J. Comput. Phys.
131
(
1
),
3
47
(
1997
).
31.
C.
Shu
and
S.
Osher
, “
Efficient implementation of essentially non-oscillatory shock-capturing schemes
,”
J. Comput. Phys.
77
(
2
),
439
471
(
1988
).
32.
Q.
Li
,
S.
Omar
,
X.
Deng
, and
K.
Yokoi
, “
Constrained interpolation profile conservative semi-Lagrangian scheme based on third-order polynomial functions and essentially non-oscillatory (CIP-CSL3ENO) scheme
,”
Commun. Comput. Phys.
22
(
3
),
765
788
(
2017
).
33.
Z.
Sun
and
F.
Xiao
, “
A semi-Lagrangian multi-moment finite volume method with fourth-order Weno projection
,”
Int. J. Numer. Methods Fluids
83
(
4
),
351
375
(
2017
).
34.
G.
Jiang
and
C.
Shu
, “
Efficient implementation of weighted ENO schemes
,”
J. Comput. Phys.
126
(
1
),
202
228
(
1996
).
35.
R.
Borges
,
M.
Carmona
,
B.
Costa
, and
W. S.
Don
, “
An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws
,”
J. Comput. Phys.
227
(
6
),
3191
3211
(
2008
).
36.
Z.
Sun
,
S.
Inaba
, and
F.
Xiao
, “
Boundary variation diminishing (BVD) reconstruction: A new approach to improve Godunov schemes
,”
J. Comput. Phys.
322
,
309
325
(
2016
).
37.
X.
Deng
,
S.
Inab
,
B.
Xie
,
K. M.
Shyue
, and
F.
Xiao
, “
High fidelity discontinuity-resolving reconstruction for compressible multiphase flows with moving interfaces
,”
J. Comput. Phys.
371
,
945
966
(
2018
).
38.
X.
Deng
,
Y.
Shimizu
, and
F.
Xiao
, “
A fifth-order shock capturing scheme with two-stage boundary variation diminishing algorithm
,”
J. Comput. Phys.
386
,
323
349
(
2019
).
39.
X.
Deng
,
B.
Xie
,
R.
Loubère
,
Y.
Shimizu
, and
F.
Xiao
, “
Limiter-free discontinuity-capturing scheme for compressible gas dynamics with reactive fronts
,”
Comput. Fluids
171
,
1
14
(
2018
).
40.
X.
Deng
,
B.
Xie
,
R.
Loubère
,
Y.
Shimizu
, and
F.
Xiao
, “
A new shock-capturing scheme for stiff detonation waves problems
,”
AIAA
171
,
1
20
(
2018
).
41.
X.
Deng
,
Y.
Shimizu
,
B.
Xie
, and
F.
Xiao
, “
Constructing higher order discontinuity-capturing schemes with upwind-biased interpolations and boundary variation diminishing algorithm
,”
Comput. Fluids
200
,
104433
(
2020
).
42.
Q.
Li
,
K.
Yokoi
,
Z.
Xie
,
S.
Omar
, and
J.
Xue
, “
A fifth-order high-resolution shock-capturing scheme based on modified weighted essentially non-oscillatory method and boundary variation diminishing framework for compressible flows and compressible two-phase flows
,”
Phys. Fluids
33
(
5
),
056104
(
2021
).
43.
F.
Xiao
,
Y.
Honma
, and
T.
Kono
, “
A simple algebraic interface capturing scheme using hyperbolic tangent function
,”
Int. J. Numer. Methods Fluids
48
(
9
),
1023
1040
(
2005
).
44.
F.
Xiao
,
S.
Ii
, and
C.
Chen
, “
Revisit to the THINC scheme: A simple algebraic VOF algorithm
,”
J. Comput. Phys.
230
(
19
),
7086
7092
(
2011
).
45.
L.
Cheng
,
X.
Deng
,
B.
Xie
,
Y.
Jiang
, and
F.
Xiao
, “
Low-dissipation BVD schemes for single and multi-phase compressible flows on unstructured grids
,”
J. Comput. Phys.
428
,
110088
(
2021
).
46.
B.
Xie
and
X.
Feng
, “
Toward efficient and accurate interface capturing on arbitrary hybrid unstructured grids: The THINC method with quadratic surface representation and Gaussian quadrature
,”
J. Comput. Phys.
349
,
415
440
(
2017
).
47.
Z.
Jiang
,
X.
Deng
,
F.
Xiao
,
C.
Yan
, and
J.
Yu
, “
A higher order interpolation scheme of finite volume method for compressible flow on curvilinear grids
,”
Commun. Comput. Phys.
28
(
4
),
1609
1638
(
2020
).
48.
F.
Xiao
,
T.
Yabe
, and
T.
Ito
, “
Constructing oscillation preventing scheme for advection equation by rational function
,”
Comput. Phys. Commun.
93
(
1
),
1
12
(
1996
).
49.
K.
Shyue
and
F.
Xiao
, “
An Eulerian interface sharpening algorithm for compressible two-phase flow: The algebraic THINC approach
,”
J. Comput. Phys.
268
,
326
354
(
2014
).
50.
D.
Cassidy
,
J.
Edwards
, and
M.
Tian
, “
An investigation of interface-sharpening schemes for multi-phase mixture flows
,”
J. Comput. Phys.
228
(
16
),
5628
5649
(
2009
).
51.
C.
Shu
, “
High order weighted essentially nonoscillatory schemes for convection dominated problems
,”
SIAM Rev.
51
(
1
),
82
126
(
2009
).
52.
C.
Shu
, “
Total-variation-diminishing time discretizations
,”
SIAM J. Sci. Stat. Comput.
9
(
6
),
1073
1084
(
1988
).
53.
S.
Ii
and
F.
Xiao
, “
CIP/multi-moment finite volume method for Euler equations: A semi-Lagrangian characteristic formulation
,”
J. Comput. Phys.
222
(
2
),
849
871
(
2007
).
54.
K.
Yokoi
,
M.
Furuichi
, and
M.
Sakai
, “
An efficient multi-dimensional implementation of VSIAM3 and its applications to free surface flows
,”
Phys. Fluids
29
(
12
),
121611
(
2017
).
55.
W.
Gropp
,
E.
Lusk
, and
A.
Skjellum
, “
Using mpi portable parallel programming with the message-passing interface
,” in
Scientific and Engineering Computation Series
(
Massachusetts Institute of Technology
,
2014
).
56.
B.
Xie
,
S.
Ii
,
A.
Ikebata
, and
F.
Xiao
, “
A multi-moment finite volume method for incompressible Navier-Stokes equations on unstructured grids: Volume-average/point-value formulation
,”
J. Comput. Phys.
277
,
138
162
(
2014
).
57.
B.
Xie
and
F.
Xiao
, “
Two and three dimensional multi-moment finite volume solver for incompressible Navier-Stokes equations on unstructured grids with arbitrary quadrilateral and hexahedral elements
,”
Comput. Fluids
104
,
40
54
(
2014
).
58.
F.
Xiao
and
B.
Xie
, “
Accurate and robust piso algorithm on hybrid unstructured grids using the multimoment finite volume method
,”
Numer. Heat Transfer, Part B
71
(
1/6
),
146
172
(
2017
).
59.
B.
Xie
,
S.
Ii
, and
F.
Xiao
, “
An efficient and accurate algebraic interface capturing method for unstructured grids in 2 and 3 dimensions: The THINC method with quadratic surface representation
,”
Int. J. Numer. Methods Fluids
76
(
12
),
1025
1042
(
2014
).
60.
B.
Xie
and
F.
Xiao
, “
A multi-moment constrained finite volume method on arbitrary unstructured grids for incompressible flows
,”
J. Comput. Phys.
327
,
747
778
(
2016
).
61.
L. L.
Takacs
, “
A two-step scheme for the advection equation with minimized dissipation and dispersion errors
,”
Mon. Weather Rev.
113
(
6
),
1050
1065
(
1985
).
62.
G.
Strang
, “
On the construction and comparison of difference schemes
,”
SIAM J. Numer. Anal.
5
(
3
),
506
517
(
1968
).
63.
J.
Qiu
and
C. W.
Shu
, “
Hermite WENO schemes and their application as limiters for Runge–Kutta discontinuous Galerkin method: One-dimensional case
,”
J. Comput. Phys.
193
(
1
),
115
135
(
2004
).
64.
G. A.
Sod
, “
A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws
,”
J. Comput. Phys.
27
(
1
),
1
31
(
1978
).
65.
P.
Woodward
and
P.
Colella
, “
The numerical simulation of two-dimensional fluid flow with strong shocks
,”
J. Comput. Phys.
54
(
1
),
115
173
(
1984
).
66.
U.
Ghia
,
K. N.
Ghia
, and
C.
Shin
, “
High resolutions for incompressible flow using the Navier-Stokes equations and a multigrid method
,”
J. Comput. Phys.
48
(
3
),
387
411
(
1982
).
You do not currently have access to this content.